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Abstract

This paper mainly focuses on the problem of camera calibration and 3D reconstruction from a single view of structured scene. It is well

known that three constraints on the intrinsic parameters of a camera can be obtained from the vanishing points of three mutually orthogonal

directions. However, there usually exist one or several pairs of line segments, which are mutually orthogonal and lie in the pencil of planes

defined by two of the vanishing directions in the structured scenes. It is proved in this paper that a new independent constraint to the image of

the absolute conic can be obtained if the pair of line segments is of equal length or with known length ratio in space. The constraint is further

studied both in terms of the vanishing points and the images of circular points. Hence, four independent constraints on a camera are obtained

from one image, and the camera can be calibrated under the widely accepted assumption of zero-skew. This paper also presents a simple

method for the recovery of camera extrinsic parameters and projection matrix with respect to a given world coordinate system. Furthermore,

several methods are presented to estimate the positions and poses of space planar surfaces from the recovered projection matrix and scene

constraints. Thus, a scene structure can be reconstructed by combining the planar patches. Extensive experiments on simulated data and real

images, as well as a comparative test with other methods in the literature, validate our proposed methods.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

3D reconstruction from 2D images is a central problem of

computer vision. Examples and applications of this task

include robot navigation and obstacle recognition, augmen-

ted reality, architectural surveying, forensic science and

others. The classical method for this problem is to

reconstruct the metric structure of the scene from two or

more images by stereovision techniques [1,2]. However, this

is a hard task due to the problem of seeking correspondences

between different views. In recent years, some attentions are

focused on reconstruction directly from a single uncalibrated

image. It is well known that only one image cannot provide

enough information for a complete 3D reconstruction.
0262-8856/$ - see front matter q 2004 Elsevier B.V. All rights reserved.
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However, some metrical quantities can be inferred directly

from a single image with the prior knowledge of geometrical

scene constraints. Such constraints may be expressed in

terms of vanishing points or lines, co-planarity, special inter-

relationship of features and camera constraints.

There are many studies on the problem of single view

based calibration and reconstruction in the literature.

Traditional approaches for solving this problem utilize a

particular cue, such as shading, lighting, texture and

defocusing [22,23]. These methods make strong assump-

tions on shape, reflectance or exposure, and tend to require a

controlled environment, which is often not practical. The

popular approaches in recent years are trying to use the

geometrical information obtained from images. Horry et al.

[3] propose a technique, named tour into the picture. They

created a graphic user interface that allows the user to

separate a 2D image into background and foreground, and

separate the background into five regions and form a cube.

The foreground images are then placed inside the cube at
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appropriate locations, and a virtual ‘walk through’ anima-

tion is generated finally. Zhang et al. [4] propose a method,

which combines a sparse set of user-specified constraints,

such as surface position, normals, silhouettes and creases, to

generate a well-behaved 3D surface satisfying these

constraints.

For a wide variety of man-made environment (architec-

ture, facades [5], etc.), a cuboid is a reasonable model.

Caprile and Torre [6] propose a method for camera

calibration from vanishing points computed from the

projected edges of the cuboids. These vanishing points

correspond to three mutually orthogonal directions in space,

which can provide three independent constraints to the

intrinsic parameters of a camera. Following this idea,

several approaches that make use of vanishing points and

lines have been proposed for either cameras calibration or

scene reconstruction [7–10]. Most of the studies are usually

under the assumption of square pixels, i.e. zero-skew and

unit aspect ratio. However, the assumption may not be

applicable to some off-the-shelf digital cameras. Wilczkowiak

et al. [11,12] and Chen et al. [13] expand the idea to general

parallelepiped structures, and use the constraints of

parallelepipeds for camera calibration. Wilczkowiak et al.

[12] also present a complete duality that exists between the

intrinsic metric characteristics of a parallelepiped and the

intrinsic parameters of a camera. Criminisi et al. [14] study

the problem by computing 3D affine measurement from a

single perspective image. The approach is based on the

vanishing line of a reference plane and the vanishing point

in vertical direction.

Inspired by the idea of cuboid, our work is targeted on

man-made structures, such as architectures, which typically

contain three orthogonal principal directions, and the

corresponding vanishing points can be retrieved from the

image of straight lines using maximum likelihood estimator

[7]. Our research aims at making full use of scene

constraints to obtain a more accurate and photorealistic

model of a 3D object. It is assumed that there are one or

several pairs of mutually orthogonal line segments, which

lie in the pencil of planes defined by two of the vanishing

directions in the scene and the pair of segments are of equal

length or with known length ratio. This is not rare for most

of man-made objects.

The main contribution of this paper is that we prove that

the pair of line segments with equal length or known length

ratio in the scene can provide an additional independent

constraint to the image of the absolute conic. Three

equivalent forms of the constraints are further studied

both in terms of the orthogonal vanishing points and the

image of circular points. We also present a simple approach

to the recovery of camera pose and projection matrix with

respect to a given world system. Thus, the object can be

reconstructed by taking measurement on piecewise planar

patches [11,14].

The remaining parts of this paper are organized as

follows. In Section 2, some preliminaries on projection
matrix and the absolute conic are reviewed. Then, the

calibration method is elaborated in detail in Section 3. The

method to recover the extrinsic parameters and camera

projection matrix is given in Section 4. In Section 5, the

methods for measurement and 3D reconstruction are

presented. The test results with simulated data and real

images are presented in Sections 6 and 7, respectively. The

conclusion of this paper is given in Section 8.
2. Notation and preliminaries

In order to facilitate our discussions in the subsequent

sections, some preliminaries on camera projection matrix

and the absolute conic are presented here. Readers can refer

to Hartley [1] and Faugeras [2] for more detail. In this paper,

the following notations are used. An image point is denoted

by a bold lower case letter, e.g. �x, while its corresponding

homogeneous vector is denoted by xZ ½ �xT;w�T, (x)i denotes

the ith element of vector x; a matrix is denoted by a bold

upper case letter, e.g. P, Pi denotes the ith column vector of

matrix P, while Pi,j stands for the element in the ith row and

jth column of P. ‘z’ stands for equality up to scale. For two

line segments s and s 0 in an image, ‘sys 0’ stands for their

corresponding segments in the Euclidean space are equal in

length.
2.1. Camera projection matrix

Under perspective projection, a 3D point x in space is

projected to an image point m via a 3!4 rank 3 projection

matrix P as

lm Z Px Z K½R; t�x (1)

where l is a non-zero scalar; R and t are the rotation matrix

and translation vector from the world system to the camera

system. K is the camera calibration matrix in the form of

K Z

fu s u0

0 fv v0

0 0 1

2
64

3
75 Z

fu fu ctg q u0

0 rfu v0

0 0 1

2
64

3
75 (2)

where fu, fv represent the camera’s focal length correspond-

ing to the u and v axes of camera coordinates; (u0, v0) is the

coordinates of the camera’s principal point; sZfu ctg q

refers to the skew factor, with q the included angle of the u

and v axes; rZfv/fu is termed as the aspect ratio. For most

CCD cameras, we can assume rectangle pixels, i.e. qZ908

or sZ0. Then, the camera becomes a simplified one with

only four intrinsic parameters. For some high quality

cameras, we may even assume square pixels, i.e. sZ0 and

rZ1 (fuZfv), and the camera model is simplified to three

parameters accordingly.

Lemma 1. The first three columns of projection matrix P are

images of the vanishing points corresponding to the X, Y
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and Z axes of the world system, respectively, and the

last column P4 is the image of the origin of the world

system.

Lemma 2. The plane at infinity in space can be expressed as

PNZ[0, 0, 0, 1]T, and the mapping between PN and the

image of the infinite plane pN is the planar homography

HNZKR.

Lemma 3. Suppose the homography between a space

plane and the image plane is H, then for a conic

C(xTCxZ0) on the space plane, its corresponding image

is: C 0ZHKTCHK1.
2.2. The absolute conic and the image of the absolute conic

The absolute conic (AC), UN, is a conic on the plane at

infinity PN, which satisfies

UN Z f �xNj �xT
N �xN Z 0g (3)

where �xN is an infinite point on PN. Thus, UN corresponds

to a conic CNZI. It is a conic composed of purely

imaginary points on PN. Under the homography between

PN and the image, the image of the absolute conic (IAC) is

easily obtained from Lemma 3 as

u Z HKT
N CNHK1

N Z ðKRÞKTIðKRÞK1

Z KKTRKTRK1KK1 Z ðKKTÞK1 (4)

the dual image of the absolute conic (DIAC) is: u*ZuK1Z
KKT. It is clear that both the IAC and the DIAC depend

only on the camera calibration matrix K.

Lemma 4. The image of the absolute conic u is a

symmetric matrix with five degrees of freedom (this is

because the IAC is defined up to a scale). For a camera

with rectangle pixels, it is easy to verify that u12Zu21Z
0, this can provide one linear constraint on the IAC. For

a camera with square pixels, we have u12Zu21Z0 and

u11Ku22Z0, this can provide two linear constrains on

the IAC.
Fig. 1. Three orthogonal vanishing points can be obtained from a single image. Th

are of equal length, such as s1ys 01, s2ys 02, s3ys03, s4ys 04.
Lemma 5. Let v1, v2 be the vanishing points of two space

lines, q the included angle of the two lines, then

cos q Z
vT

1 uv2ffiffiffiffiffiffiffiffiffiffiffiffi
vT

1 uv1

p ffiffiffiffiffiffiffiffiffiffiffiffi
vT

2 uv2

p :

Lemma 6. If the two lines in Lemma 5 are orthogonal, then

vT
1 uv2Z0, i.e. the vanishing points of the lines with

orthogonal directions are conjugate with respect to the IAC.

Proofs of the above six lemmas can be found in [1,18].

From Lemma 6 we see that each pair of orthogonal

vanishing points can provide one linear constraint on the

IAC. If five such independent constraints can be obtained

from the image, then the IAC can be computed linearly, and

the intrinsic parameters of the camera can in turn be

recovered straightforwardly from the IAC by Cholesky

decomposition [1].
3. Camera calibration from a single view

3.1. Calibration from vanishing points and scene constrains

Usually, we can obtain three mutually orthogonal pairs of

parallel lines from only one image of many man-made

objects, such as architectures. Consequently, the three

orthogonal vanishing points, say vx, vy, vz, can be computed

easily, as shown in Fig. 1. Therefore, three linear constraints

on the IAC are obtained from only a single view of the

scene. Most researchers use these constraints to calibrate the

camera under the assumption of square pixels. Since under

this assumption, two additional constraints can be obtained

from Lemma 4, thus, the image of the absolute conic can be

computed linearly. In this case, it was also shown that the

camera’s principal point is the orthocenter of the triangle

with the three orthogonal vanishing points as vertices [1,15].

The square-pixel assumption, however, is much less

tenable and does not hold for most off-the-shelf digital

cameras, then the above algorithm may fail or give a poor

solution. A question arises here: Can some additional

constraints on the IAC be extracted from a single view?
ere are some pairs of image segments whose corresponding space segments



Fig. 2. vx and vy are the vanishing points of two mutually orthogonal pairs of parallel lines, respectively, two equal-length segments S and S0 are parallel to the

two pairs of lines. Then the formed quadrangle abcd in the image must correspond to a square in space and the two intersection points v1 and v2 must be a pair of

orthogonal vanishing points.
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The answer is positive in most cases. This is because most of

the man-made objects have some property of symmetry or

contain some line segments with equal length or known

length ratio. Let us see Fig. 1 again, it is easy to find that line

segments s1ys 01, s2ys 02, s3ys 03, s4ys 04. We will show, in

the following, how to use these properties in camera

calibration.

Proposition 1. Given two mutually orthogonal pairs of

parallel lines Lx, L 0
x and Ly, L 0

y in the space (as shown in

Fig. 2), two equal-length segments S and S 0 are parallel to

Lx and Ly, respectively. Then, a new linear constraint on the

image of absolute conic can be obtained.

Proof. Suppose vx is the vanishing point of Lx, L 0
x, vy is the

vanishing point of Ly, L 0
y. Then, the extension of image

segments s and s 0 must pass through vx and vy, respectively.

Connecting vx with the endpoints of s 0, vy with the endpoints

of s forms a quadrangle abcd, which corresponds to ABCD in

the space, as shown in Fig. 2. It is easy to see that AB//CD,

BC//AD and ABtBC. Thus, quadrangle ABCD is a square

and its diagonal lines ACtBD. Suppose line ac intersects

the vanishing line at v1, bd intersects the vanishing line at v2,

then v1 and v2 must be the vanishing points of two orthogonal

directions. So we have vT
1 uv2Z0 from Lemma 6. ,

From v1 and v2, together with the three orthogonal

vanishing points vx, vy, vz, four linearly independent

constraints are obtained from a single view

vT
x uvy Z 0

vT
y uvz Z 0

vT
z uvx Z 0

vT
1 uv2 Z 0

8>>>>><
>>>>>:

(5)

If we can retrieve another set of orthogonal vanishing

points on the vanishing line vyvz or vxvz from other sets of

line segments, then five independent constraints can be

obtained, and u can be computed linearly. Unfortunately,

this is rarely the case. Nevertheless, considering that most

cameras can be assumed to have rectangle pixels (zero-

skew), this is a quite natural and safe assumption for most

imaging conditions, hence u can still be solved linearly

by the additional independent constraint u12Zu21Z0
from Lemma 4. The constraint can also be written as

[1 0 0]u[0 1 0]TZ0, which means that the two axes of the

image coordinates are orthogonal [15].

Remark 1. If there are more pairs of equal-length segments

available in the scene, as shown in the left image of Fig. 1,

then more squares can be obtained, and all the squares

should be parallel in space. In this case, the vanishing points

v1 and v2 can be computed by maximum likelihood

estimation or other estimation methods so as to obtain a

more faithful result.

Remark 2. If the line segments in Proposition 1 are with

known length ratio rather than of equal length, then the

angle between the diagonals AC and BD can be computed

from the length ratio. In this case, v1 and v2 can also provide

a constraint on the IAC from Lemma 5, but the constraint is

non-linear. We will show in Section 3.2 that it can be

converted into a linear one if the imaged circular points are

recovered.

Remark 3. Degeneration will occur if one or more of the

four points vx, vy, v1, v2 is located at infinity or near infinity

in the image. Zisserman [15] gives a good discussion on the

degeneration and ambiguities arising in camera calibration.

3.2. Calibration by virtue of circular points

In this section, the problem is further studied from the

viewpoint of the circular points. We first show how to

recover the images of the circular points from the two

segments, then present three equivalent forms of constraints

obtained from the imaged circular points and a vertical

vanishing points. Unlike what is stated in Remark 2, all the

computation here can be achieved linearly even the two

segments are not equal in length.

Proposition 2. The imaged circular points can be computed

from the conditions given in Proposition 1. The same is true

if the line segments in Proposition 1 are with known length

ratio instead of equal length in space.

Proof. When the two segments s and s 0 are with known

length ratio in space, we can suppose the angle between the

corresponding space lines of ac and bd is q, the imaged

circular points are mi and mj on the vanishing line, as shown



Fig. 3. The cross ratio of the four concurrent lines lv1, lv2, lmi, lmj, or four

collinear points v1, v2, mi, mj can be computed from the angle q via

Laguerre theorem.
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in Fig. 3 (refer to Fig. 2). There are four concurrent lines lv1,

lv2, lmi, lmj through the intersection o of the lines ac and bd.

From Laguerre theorem [19], we have

q Z
1

2i
lnðlv1lv2; lmilmjÞ (6)

where (lv1lv2;lmilmj) is the cross ratio of the four concurrent

lines. It is easy to verify that the cross ratio is equal to that of

the four collinear points v1, v2, mi, mj, i.e. (lv1lv2;lmilmj)Z
(v1v2;mimj). Thus, Eq. (6) can be written as:

ðv1v2;mimjÞ Z expð2qiÞ (7)

When the two segments are of equal length, Eq. (7)

becomes (v1v2;mimj)ZK1. On the other hand, since two

orthogonal vanishing points are harmonic with the two

imaged circular points mi and mj, we have:

ðvxvy;mimjÞ ZK1 (8)

From (7) and (8), we can obtain two quadric equations

which will provide two pairs of solutions of mi and mj, but

only one solution is the true circular points (please refer to

[16,17] for the proof). However, it is tedious to solve second

order equations. We will introduce a linear method in the

following.

From the above discussion, we know that the quadrangle

abcd corresponds to a rectangle (square) in the space,

suppose the rectangle is ABCD as shown in Fig. 4. Set the

origin of the world coordinate system on the center of

the rectangle with X and Y axes parallel to the two sides of
Fig. 4. The homography between the space rectangle and the image plane

can be computed from four line correspondences Li4li (iZ1,.,4).
the rectangle, respectively. Then the coordinates of the four

side lines Li (iZ1,.,4) can be computed easily as:

L1 Z 0; 1; sin q
2


 �T
; L2 Z 1; 0;Kcos q

2


 �T

L4 Z 1; 0; cos q
2


 �T
; L3 Z 0; 1;Ksin q

2


 �T

8<
: (9)

Therefore, we have four line correspondences Li4li (iZ
1,.,4), the homography H between the space plane and the

image can be linearly computed via SVD or through the

following equation

H Z ½l1; l2; l3�
KTdiagðd1; d2; d3Þ½L1;L2;L3�

T (10)

where

dj Z
ð½L1;L2;L3�

K1L4Þj

ð½l1; l2; l3�
K1l4Þj

; j Z 1; 2; 3;

(a)j denotes the jth element of vector a. The canonical form

of the circular point in the space plane is [1,Gi,0]T. Thus,

the imaged circular points can be uniquely computed as:

mi zH½1;Ci; 0�T

mj zH½1;Ki; 0�T

(
(11)

The images of the circular points are independent with

the selection of the coordinate system. Thus, we may also

select other world coordinate system. ,

Proposition 3. Four independent linear constraints on the

IAC can be obtained from the images of circular points mi,

mj, and a vertical vanishing point vz, which is the image of

the direction perpendicular to parallel planes going through

mi and mj.

Proof. Since the imaged circular points are a pair of

complex conjugate points lying on the image of absolute

conic, they satisfy the following equations:

mT
i umi Z 0

mT
j umj Z 0

(
(12)

On the other hand, mi(mj) and vz can be considered as

the vanishing points of lines with orthogonal directions.

So from Lemma 6 we have:

mT
i uvz Z 0

mT
j uvz Z 0

(
(13)

It is clear that (12) and (13) altogether provide four

linearly independent constraints on u. ,

Since mi and mj are a pair of complex conjugate 3-

vectors, let vector vr and vi be the corresponding real and

imaginary parts, i.e. miZvrCivi, mjZvrKivi, then the

constraints in (12) and (13) can be written as the following



Fig. 5. The pole–polar relationship with respect to the IAC between the

vanishing line lN and the vertical vanishing point vz.
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equivalent form through a simple computation

vT
r uvz Z 0

vT
i uvz Z 0

vT
r uvr KvT

i uvi Z 0

vT
r uvi CvT

i uvr Z 0

8>>>>><
>>>>>:

(14)

Another set of equivalent constraints can also be

obtained as follows. Since there is a pole–polar relationship

with respect to the IAC between the vanishing line lNZ
mi!mj and the vertical vanishing point vz (see Fig. 5), lines

liZmi!vz and ljZmj!vz are tangent to the IAC at the

circular points mi and mj. Thus, we have

mi !mj Z l1uvz

mi !vz Z l2umi

mj !vz Z l3umj

8><
>: (15)

where l1, l2, l3 are unknown non-zero scales. Each equation

in (15) can provide two linear constraints on the IAC, but

only four of them are independent, which are equivalent to

those given in (14). Actually, the last two equations in (15)

provide the same constraints, since mi, and mj are complex

conjugate.

We have obtained three sets of linear constraints which are

equivalent in essence. In practice, we can use one of them so

as to simplify the computation. From the four independent

constraints, a one-parameter family of solutions for the IAC

can be obtained, while this ambiguity can also be solved by

the assumption of rectangle pixels as in Section 3.1.
Fig. 6. The world coordinate system and three orthogonal vanishing points.
4. Recovery of extrinsic parameters and camera

projection matrix

Proposition 4. A rotation matrix and projection matrix with

respect to the world coordinate system of Fig.4 can be

recovered given the camera’s calibration matrix.

Proof. We have computed the homography in Section 3.2.

Then from Eq. (1) we have

sH Z Kðr1; r2; tÞ; s:t: kr1k Z kr2k Z 1 (16)
where ri is the ith column of the orthonormal rotation matrix

R, t is the translation vector. Let KK1HZ[a1, a2, a3]. It is

easy to see that sZG1=ka1kðZG1=ka2kÞ, r1Zsa1, r2Zsa2,

r3Zr1!r2, tZsa3. Thus, we have two pairs of solutions of

R and t as:

R1 Z
a1

ka1k
;

a2

ka2k
;

a1 !a2

ka1 !a2k

� �
; t1 Z

a3

ka1k
(17)

R2 Z K
a1

ka1k
;K

a2

ka2k
;

a1 !a2

ka1 !a2k

� �
; t2 ZK

a3

ka1k
(18)

It is obviously that only one pair of the above solutions

can make the reconstructed objects lie in the front of the

camera, this is the correct solution. The camera projection

matrix can then be computed straightforwardly from Eq. (1)

as PZK[R,t]. ,
5. Measurement and 3D reconstruction

from a single view

As three orthogonal vanishing points have been obtained,

the scene in the world may be taken in general as in the

shape of a cuboid. Let us assume the world coordinate

system is on the cuboid (see Fig. 6 and note that other

selections are optional). Then the camera projection matrix

can be retrieved with respect to the world system. In this

section, we will present a method of 3D reconstruction from

a single view based on scene measurement.

Most man-made objects, especially architectures, are

usually composed of many pieces of planar surfaces. If the

world coordinates of each surface can be obtained, then all

the 3D information on the surface can be recovered

accordingly. Thus, the whole object is assembled by

merging the planar patches into a 3D structure [14,18].

Suppose the coordinates of a space plane is Pi, i.e.

PT
i xZ0, with xZ[x, y, z, 1]T, then for an image point mj

on the plane, its corresponding space point xj can be easily

computed by the intersection of the back-projected line



Fig. 8. The relationship between the reference plane, vertical plane and an

arbitrary plane. There is a pencil of planes passing through line L.
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and the plane as:

smj Z Pxj

PT
i xj Z 0

(
(19)

Similarly, for an image line l, its back-projection is a

plane PZPTl; for a conic C in the image, its back-

projection is a view cone QZPTCP. Their corresponding

space coordinates can also be computed linearly by the

intersection of the back-projection and the space plane.

In Fig. 6, the coordinates of plane P0, P1 and P2 are

obvious, while the coordinates of most other planar surfaces

can be recovered from the scene constraints with respect to

the three base planes [14]. Let us take the plane P0 as an

example.

Proposition 5. The coordinates of plane Pi parallel to P0

can be retrieved if a pair of corresponding points on P0 and

Pi in the direction of vz can be obtained from the image.

Proof. To recover the coordinates of Pi is equivalent to

retrieving the distance z0 between P0 and Pi. Suppose xZ
[x0, y0, 0, 1]T and x 0Z[x0, y0, z0, 1]T are the pair of

corresponding points on the two planes, with three

unknowns x0, y0, z0, as shown in Fig. 7. Their corresponding

images are mxZ[ux, vx, 1]T and m 0
xZ[u 0

x, v 0
x, 1]T,

respectively. Then from

s1mx Z Px

s2m0
x Z Px0

(
(20)

it is easy to obtain the coordinates of plane PiZ[0, 0, 1,

Kz0]T. We can also use this proposition to compute the

height of an object on the plane P0. ,

Proposition 6. Suppose an arbitrary plane Pa intersect P0

at line L (see Fig. 8), then the coordinates of plane Pa can

be determined from the images of a pair of parallel lines on

the plane.

Proof. Since L lies on the plane P0Z[0, 0, 1, 0]T, its

coordinates can be easily computed. Suppose LZ[a, b, 0,

d]T, Pv is the plane passing through L and perpendicular to

P0, then Pv must have the same coordinates as L. All the

planes passing through L form a pencil, and the pencil can

be expressed as PaZPvClP0Z[a, b, l, d]T, with l the

only unknown parameters here.
Fig. 7. The vertical vanishing point vz and a pair of corresponding points

between two parallel planes.
Denote the parallel lines in space and their corresponding

images as L1, L2 and l1, l2, respectively, the back-projection

of l1, l2 form two space planes Pb1ZPTl1 and Pb2ZPTl2.

Denote the normal vector of plane Pa, Pb1, Pb2 as na, nb1,

nb2, let the direction vector of L1, L2 be nL1, nL2, then nL1Z
na!nb1, nL2Zna!nb2. From L1//L2, l can be easily

computed via the least squares. Thus, the coordinates of

Pa is recovered. ,

Remark 4. If some other prior information in the arbitrary

plane, such as two orthogonal lines, the coordinates of a

point, etc. can be retrieved from the image, the scalar l, as

well as the coordinates of the arbitrary plane, can also be

computed in a similar way.

Remark 5. Other geometrical entities, such as the distance

between two lines, distance from a point to a plane, angle

formed by two lines or two planes, angle formed by a line

and a plane, etc. can also be recovered by combining the

scene constraints [18].
6. Experiments with simulated data

During the simulations, we generate a cube in the space,

whose size and position in the world coordinate system are

shown in Fig. 9. There are three parallel lines corresponding

to each direction of the three world axes, each line is
Fig. 9. The simulated cube and the world coordinate system, there are three

pair of parallel lines corresponding to the directions of three axes of the

world system.



Fig. 10. The image of the simulated cube in (a) Case 1 and (b) Case 2. Note that the two segments s and s 0 correspond to segments with equal length in space,

but their lengths in images are quite different due to different imaging conditions.

Table 1

The comparative calibration results of our method (RA) and Wilczkowiak’s method (PA) in Case 1

Noise level (d) 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

fu Mean RA 0.019 0.034 0.065 0.160 0.467 0.788 1.028 1.579 1.948

PA 0.028 0.049 0.121 0.418 0.928 1.407 1.964 2.447 2.809

STD RA 0.112 0.199 0.413 0.722 0.928 1.342 1.822 2.340 2.908

PA 0.149 0.237 0.521 0.947 1.143 1.408 1.842 2.292 2.819

fv Mean RA 0.018 0.028 0.053 0.165 0.453 0.714 0.978 1.465 1.727

PA 0.021 0.044 0.117 0.366 0.847 1.097 1.873 2.234 2.720

STD RA 0.078 0.153 0.334 0.657 0.884 1.157 1.699 2.197 2.660

PA 0.093 0.204 0.431 0.797 1.054 1.306 1.735 2.441 3.046

u0 Mean RA 0.009 0.025 0.045 0.141 0.377 0.587 0.918 1.357 1.515

PA 0.013 0.039 0.103 0.325 0.795 1.050 1.653 2.151 2.585

STD RA 0.061 0.115 0.286 0.570 0.845 1.070 1.410 1.941 2.202

PA 0.088 0.184 0.362 0.658 0.905 1.134 1.501 2.107 2.640

v0 Mean RA 0.028 0.043 0.086 0.214 0.543 0.931 1.326 1.731 2.174

PA 0.041 0.081 0.204 0.346 0.962 1.439 2.014 2.496 2.961

STD RA 0.132 0.238 0.481 0.863 0.992 1.402 1.845 2.584 2.970

PA 0.159 0.251 0.569 0.926 1.094 1.448 1.969 2.426 2.888

In each noise level, 500 independent tests are taken. We can see from the mean and STD of the relative errors (%) of four intrinsic parameters that our method

performs better than that of Wilczkowiak’s in this case.

Table 2

The comparative calibration results of our method (RA) and Wilczkowiak’s method (PA) in Case 2, Wilczkowiak’s method performs better than that of ours in

this case

Noise level (d) 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

fu Mean RA 0.056 0.109 0.346 0.917 2.026 2.562 3.318 4.209 5.129

PA 0.036 0.069 0.207 0.576 1.270 1.766 2.404 3.168 3.795

STD RA 0.328 0.630 1.022 1.771 2.189 2.576 3.614 4.614 5.617

PA 0.208 0.436 0.662 1.266 1.586 1.901 2.588 3.371 4.381

fv Mean RA 0.050 0.086 0.299 0.805 1.898 2.306 2.973 3.867 4.976

PA 0.029 0.064 0.175 0.557 1.136 1.573 2.222 2.955 3.628

STD RA 0.274 0.461 0.896 1.714 1.998 2.547 3.336 4.310 5.443

PA 0.152 0.369 0.606 1.183 1.437 1.732 2.345 3.044 4.171

u0 Mean RA 0.046 0.118 0.261 0.702 1.531 2.029 2.099 3.643 4.648

PA 0.021 0.068 0.153 0.462 0.897 1.525 2.118 2.752 3.339

STD RA 0.205 0.423 0.752 1.586 1.930 2.000 3.164 3.884 4.847

PA 0.121 0.285 0.488 1.074 1.391 1.728 2.137 2.833 3.878

v0 Mean RA 0.043 0.133 0.525 1.152 2.187 2.870 3.608 4.509 5.627

PA 0.041 0.084 0.272 0.739 1.495 1.949 2.512 3.488 4.183

STD RA 0.349 0.675 0.880 2.106 2.254 2.932 3.783 4.765 5.804

PA 0.230 0.514 0.667 1.439 1.773 2.118 2.803 3.653 4.501

G. Wang et al. / Image and Vision Computing 23 (2005) 311–323318



Fig. 11. The absolute errors and standard deviations of translation vector, rotation axis and rotation angle.

G. Wang et al. / Image and Vision Computing 23 (2005) 311–323 319
composed of 100 evenly distributed points. Gaussian image

noise (with mean zero) is added on each imaged point, and

the corresponding image lines are fitted from these points

using the least squares fitting. The vanishing points are

computed as the intersection of each set of parallel lines. We

also select the two space line segments (in dashed lines in

Fig. 9) S and S 0 of equal length to do calibration using our

proposed method.
6.1. Comparative tests for calibration of intrinsic

parameters

Case 1. The setup of the camera is: fuZ1200, fvZ1000, sZ0,

u0Z510, v0Z490, image size is 1000!1000 pixels, rotation

axis r1Z[0.6988, 0.7070, K0.1088]T, rotation angle a1Z
K60.8058 and translation vector t1Z[K10, K20, 210]T. The

image is shown in Fig. 10(a). In this case, the images of the

three orthogonal vanishing points are vxZ[2041, 1091]T,

vyZ[218, K655]T, vzZ[K1084, 1645]T, respectively, and

the estimated vanishing points may vary a little bit under

different noise level. We use the method proposed in Section

3.2. Table 1 gives the means and standard deviations (STDs)

of the relative errors of four estimated intrinsic parameters,

respectively. We also give a comparative calibration result

via Wilczkowiak’s method [11] under the same condition. In
Fig. 12. One image of a calibration block with three pairs of equal-length

segments used for calibration.
Table 1, RA stands for our method, PA for Wilczkowiak’s.

The mean and STD in each noise level (the STD of the

Gaussian noise, unit: pixel) are given by 500 independent

tests in order to provide more statistically meaningful results.

Case 2. The intrinsic parameters of the camera are the

same as in Case 1, while the rotation axis r2Z[K0.6576,

K0.7419, 0.1308]T, rotation angle a2Z30.028 and

translation vector t2Z[0, 0, 220]T. The corresponding

image is shown in Fig. 10(b). Note that the lengths of the

two equal segments are quite different in this condition.

The three computed vanishing points under noise

level dZ0 are vxZ[3593, 854]T, vyZ[510, K2258]T,

vzZ[K19, 854]T, respectively. The comparative cali-

bration results with Wilczkowiak’s method (PA) are

shown in Table 2.

From the above tests, as well as some other tests, we

find that in some cases, as in the test of Case 1, our

proposed method has lower relative errors and STDs in

camera calibration than Wilczkowiak’s method via

parallelepiped. While in other cases, as in the test of

Case 2, Wilczkowiak’s method performs better than ours,

but the accuracy of our proposed method is still

acceptable. One reason is that our proposed method is

based on vanishing points, it may near to degenerate when

the imaged vanishing points locate very far away from the

images, or even at infinity (in Case 2, the positions of the

estimated vanishing points are in general far away than

those in Case 1). This degeneracy may happen in all

vanishing points based methods. The other reason is that

in Case 2, the lengths of the two line segments (which are

of equal length in space and the constraint is used for
Table 3

The first test. A comparative calibration results by the proposed method

(RA), the square-pixel assumption (SA) and the DLT method

fu fv s u0 v0 Mean STD

RA 2198.1 2236.4 0 563.8 346.9 7.583 0.038

SA 2200.0 2200.0 0 579.7 274.6 7.699 0.049

DLT 2254.9 2272.6 K0.01 556.8 371.5 7.160 0.029



Fig. 13. (a) and (b) The reconstruction results of the calibration block under different viewpoints with texture mapping. (c) and (d) The corresponding

reconstruction results in triangulated wire frames under different viewpoints.
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calibration) are quite different in the image. This may

cause relative more errors in the endpoints detection of

the shorter segment. Therefore, we should avoid the

degeneracy cases during image taking so as to increase

the computational accuracy. In Case 2, if we select other

equal-length space segments which are of small length

difference in the image rather than s and s 0, tests shows
Fig. 14. One image of a church in Valbonne with three pairs of equal-length

segments used for calibration.
that the two methods are with comparative accuracy. This

calibration results are omitted here due to space

limitation.

One may have noted that Wilczkowiak’s method also

performs much worse in Case 2 than in Case 1, though the

method does not involve in the degeneracy of vanishing

points. However, the method depends on the determination

of three-dimension parameters and three angles of the

parallelepiped. The estimation of these parameters may

suffer from a loss of accuracy in Case 2, since the simulated

cube is greatly deformed in the image (see Fig. 10(b)).
6.2. Tests for calibration of extrinsic parameters

Using the estimated intrinsic parameters in Case 1, the

proposed method in Section 4 is used to compute
Table 4

The second and third tests. A comparative calibration results by the

proposed method (RA) and the square-pixel assumption (SA) method

fu fv s u0 v0

Test 2 RA 720.86 756.22 0 255.48 379.04

SA 724.31 724.31 0 260.72 386.78

Test 3 RA 1070.6 1118.2 0 523.8 378.3

SA 1094.4 1094.4 0 565.1 373.7



Fig. 15. (a) and (b) The reconstruction results of the church under different viewpoints with texture mapping. (c) and (d) The corresponding reconstruction

results in triangulated wire frames under different viewpoints.
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the extrinsic parameters of the camera. In order to facilitate

the comparison, we decompose the estimated rotation

matrix into a rotation axis and a rotation angle. Since the

ground truth is known, we compare the angular error

between the estimated and real rotation axis, the error of the

rotation angle and the angular error between the estimated

translation vector and the real one. The absolute errors and

STDs of these entities are plotted in Fig. 11 (the values in

each noise level are computed from 500 independent tests).

From the results we can see that our proposed method gives

very small absolute errors and STDs even under higher

noise level when the skew of the camera is zero. If we use

the calibration results in Case 2, the absolute errors and

STDs in each noise level are a little bit higher than those in

Case 1. The figures are omitted here due to space limitation.
Fig. 16. A image of the Wadham College of Oxford with one pairs of equal-

length segments used for calibration.
7. Experiments with real images

The experiments are performed on three test images. The

first test image is a calibration block, as shown in Fig. 12.
The image is taken by a Nikon Coolpix 990 digital camera

with resolution of 1024!768. During the test, we use

Canny edge detector to detect the edge points and use

Hough transform to fit the detected points into straight lines.

Then, the vanishing points are computed from the parallel



Fig. 17. (a) and (b) The reconstruction results of the Wadham College under different viewpoints with texture mapping. (c) and (d) The corresponding

reconstruction results in triangulated wire frames under different viewpoints.
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lines using a maximum likelihood estimator [1,7]. The

images of circular points are computed from three selected

pairs of equal-length segments (see Fig. 12) using the least

squares fitting.

The calibration results are shown in Table 3. We also give

a comparative test on using only three orthogonal vanishing

points under the assumption of square pixels. Since the size

of each square patches is known precisely for a calibration

block, the camera can be calibrated via direct linear

transform (DLT) with five intrinsic parameters [1,2]. The

result is shown in Table 3, where, RA stands for our proposed

method; SA the method under square-pixel assumption.

Fig. 13(a)–(d) gives the reconstruction results of Fig. 12

by the proposed method in Section 5. We also mark the

reconstructed corner points of each square patches of

the calibration block in Fig. 13(a). The distance between

each pair of adjacent points should be equal theoretically.

The mean value and STD of all the distances estimated by

each method are also shown in Table 3. We can see from the

results that the proposed method is better than those of only

using three vanishing points. The results of our method are

close to those given by DLT, which can only be applied to

the cases where more space points are precisely located.

The second test image is a Church in Valbonne, as

shown in Fig. 14, which is downloaded from the Visual

Geometry Group of the University of Oxford. The image
resolution is 512!768. We use the same method as in the

first test to detect the three orthogonal vanishing points,

and compute the image of circular points via three pairs

of symmetric line segments in the chimney. The

comparative calibration results are listed in Table 4. The

reconstruction results under different viewpoint with

texture mapping and in triangulated wire frames are

shown in Fig. 15(a)–(d).

The third test image is the Wadham College of Oxford,

as shown in Fig. 16, which is also downloaded from the

Visual Geometry Group, with the resolution of 1024!768.

The comparative calibration results are shown in Table 4.

The reconstruction results are given in Fig. 17(a)–(d). Note

that the depth of each window and door are recovered by the

proposed method.

We can see from all the reconstructions that they are

largely consistent with the real cases, and seem very

realistic.
8. Conclusions

In this paper, we mainly focus on the problem of camera

calibration and 3D reconstruction from a single view of a

structured scene. We propose and prove that two line

segments with equal length or known length ratio in
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the scene can provide an additional independent constraint

to the image of the absolute conic. The constraint is

expressed both in terms of a pair of orthogonal vanishing

points and the image of circular points. This is a

development to the popular calibration method based on

three orthogonal vanishing points. We also present a simple

method for the recovery of camera extrinsic parameters and

projection matrix with respect to a given world system.

Furthermore, we extend the single view metrology [14] to

the Euclidean space to estimate the position and pose of a

space planar surface from the recovered projection matrix

and scene constraints. Thus, the scene structure can be

reconstructed by combining planar patches. The recovery is

very effective as fine details like the depths of windows in a

building can also be found, since scene constraints are

utilized during the reconstruction. Extensive experiments on

simulated data and real images validate our proposed

approach and show that the method is better than the method

using only three vanishing points. A comparative exper-

imental study with other method [11] is also performed. In

many scenes, such as those containing buildings and other

man-made objects, the additional constraint can be found.

Thus, the proposed approach will have wide applications in

3D modeling. It is a simple and convenient method using a

single image and the difficult matching problem has been

avoided at the expense of minimal human interaction.

It is clear that the proposed methods are based on some

known specific geometrical information about the scene,

and the precision of the approach depends greatly on the

image preprocessing, such as edge detection, line fitting and

vanishing point detection. Hence, it is crucial to select a

robust algorithm for vanishing points computation so as to

improve the accuracy of calibration and reconstruction [7,

20,21]. It should be noted that lens distortion has not been

considered in our methods, since the camera used in our

experiment has negligible lens distortion. However, the

image should be rectified firstly if the lens distortion does

play a significant role in the accuracy of measurement.
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