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Abstract

It is well known that the applicability of independent component analysis (ICA) to high-dimensional pattern recognition tasks such as
face recognition often suffers from two problems. One is the small sample size problem. The other is the choice of basis functions (or
independent components). Both problems make ICA classifier unstable and biased. In this paper, we propose an enhanced ICA algorithm
by ensemble learning approach, named as random independent subspace (RIS), to deal with the two problems. Firstly, we use the random
resampling technique to generate some low dimensional feature subspaces, and one classifier is constructed in each feature subspace.
Then these classifiers are combined into an ensemble classifier using a final decision rule. Extensive experimentations performed on the
FERET database suggest that the proposed method can improve the performance of ICA classifier.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, pattern recognition has attracted much
attention because of its potential application, such as mili-
tary, biometrics, human–computer interface, information se-
curity, etc. However, the data often has high dimensionality
and contains much redundancy, which makes the statistical
estimation very difficult and the computational complexity
is large. How to reduce the redundancy and extract features
are key issues in pattern recognition. To address these is-
sues, a number of algorithms have been developed to re-
duce dimensionality[1–4]. Sirovich and Kirby[1] applied
principal component analysis (PCA) to reduce the dimen-
sionality of samples. Further, Turk and Pentland[2] devel-
oped it to a well-known face recognition method, known as
Eigenfaces. PCA performs dimensionality reduction by pro-
jecting the original samples into a lower dimensional linear
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subspace spanned by the leading eigenvectors of the train-
ing data’s covariance matrix. However, PCA can only en-
code the second-order statistical dependencies between pix-
els. There still exist much higher-order statistical dependen-
cies among three or more pixels. As an extension of PCA,
independent component analysis (ICA)[4–6] is capable of
finding a set of linear basis vectors to make the higher-order
statistical independence besides the second-order statistical
independence in PCA.

Due to its generality, ICA has been applied in many fields,
such as signal processing[7,8], medical image analysis
[9], face representation[10,11], etc. However, ICA method
often encounters two challenging problems in practical ap-
plications. One is the small sample size problem, i.e. there
are only a small number of training samples available in
practice. The training sample size is too small compared to
the dimensionality of feature space. In case of small sample
size, the ICA classifier constructed on the training sets is
biased and has a large variance, which result in the unstable
performance of ICA classifier. The other is the choice of
basis functions (or independent components) problem. The
most common approach is to throw away the eigenvectors
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corresponding to little eigenvalues in pre-processing stage.
However, the choice criterion of this approach satisfies the
least reconstruction error in PCA, but is not optimal for
ICA.

Ensemble learning techniques have become extremely
popular over the last several years because they combine
multiple classifiers into an ensemble classifier, which is often
demonstrated to has significantly better performance than
its base classifiers[12,13]. Such as boosting[14], bagging
[15], and the Random Subspace method[16], etc. Boost-
ing is a method to combine a sequence of classifiers by
a final decision rule, in a weighted version of the train-
ing samples which are updated dynamically according to
the errors in previous classification. The falsely classified
samples get larger weights in next classifier. In bagging, a
number of random independent bootstrap replicates of train-
ing samples are generated firstly, and then one classifier is
constructed on each of them. The final prediction is de-
cided by aggregating the decisions of all classifiers. The ran-
dom subspace method is to combine a set of classifiers that
base on resampling with replacement in the feature space of
training data.

In this paper, we apply the random subspace method to
overcome the small sample size problem and the choice
problem of basis functions for ICA classifier. By resampling
the features with replacement, a set of low dimensional
feature subspaces is generated. Then one ICA classifier is
constructed in each feature subspace. For a test sample,
each ICA classifier gives a prediction. The final predictions
are decided by aggregating all predictions using a final
decision rule. We name the proposed method random in-
dependent subspace (RIS). There are two resampling ways
in our method. The first resampling is done in the origi-
nal feature space. The second resampling is done in the
whitened feature space. To verify, respectively, the effect
of the two resampling, RIS is divided into three schemes.
Scheme I only resamples in the original feature space of the
training set. The resampling in the original feature space
is equivalent to reduce the dimensionality of feature space
and increase the virtual samples. Scheme II only resamples
in the whitened feature space whose bases are eigenvec-
tors of covariance matrix of the training set. In scheme
II, we can avoid the manual choice of basis functions
(or independent components), which is still an unsatis-
factorily resolved issue. Integrating the merits of schemes
I and II, scheme III adopts a two-level cascade resam-
pling structure which resamples the original feature space
of the training set and the whitened feature space at the
same time.

2. Independent component analysis

Independent component analysis (ICA)[4–6] technique
is capable of finding a set of linear basis vectors to make
the higher-order statistical independence besides the second-

order statistical independence in PCA. Initially, ICA is in-
timately related to the blind source separation (BSS) prob-
lem in early works[7,8]. Its goal is to separate the observed
signals into a linear combination of latent independent sig-
nals. Later, this technique is related to the principle of re-
dundancy reduction suggested by Barlow[17] as a coding
strategy. Because no analytic solution can be obtained, a
number of learning algorithms have been developed to learn
approximate solutions for ICA. Bell and Sejnowski pro-
posed a simple learning algorithm, InfoMax[5,18], which
maximize the mutual information between the inputs and
outputs of a neural network. InfoMax is an unsupervised
learning rule that contains two stages, whitening stage and
rotation stage.

Assume a set of training setX = [x1, x2, . . . , xn], where
each column vectorxi represents aN-dimensional sample
and the number of training samples isn. The general model
of ICA can be described as follows:

X = A ∗ S, (1)

whereS = [s1, s2, . . . , sn] is the coefficient.A is a square
mixing matrix and its column vectors are basis functions.
The independent component analysis is to find a sepa-
rating matrix WI , so that UI = WI ∗ X approximates
the independent componentS, possibly permuted and
rescaled.

At the first stage, the mean is subtracted from the training
set, and the first- and the second-order statistical correlations
are removed. This stage is known as whitening or sphering.
Principal Component Analysis gives an orthogonal solution
to this task.

X ∗ XT ∗ E = E ∗ �, (2)

whereE is the eigenvector matrix and� is the eigenvalue
matrix. When whitening operatorWP = �−1/2 ∗ ET, the
transformed datãX=WP ∗X are decorrelated, i.e.̃X∗X̃T=I ,
whereI is an identity matrix.

At the second stage, the whitened data are rotated to
make components as independent as possible. InfoMax
uses the following iterative learning procedure to realize the
rotation:

U = W ∗ X̃,

�W = [I + H ∗ UT] ∗ W ,

Ŵ = W + � ∗ �W → W , (3)

whereH is a matrix whose entryHij = 1 − 2/(1 + e
−Uij ),

and� is learning rate.
The full transform matrixWI is the product of the

whitening matrix and the rotation matrix learned by (3),
WI = W ∗ WP .
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3. Random independent subspace

Redundancy reduction and feature selection are key issues
in pattern recognition. To reduce the dimensionality of fea-
ture space and computational complexity, many techniques
have been developed, such as PCA (eigenfaces), LDA, etc.
As an extension of PCA, ICA has been demonstrated to
be an effective method[9–11,18]. However, there are of-
ten only a small number of training samples are available
for ICA in practice, i.e. the number of training samples is
far less than the dimensionality, which make the covariance
matrix singular in ICA. It induces ICA classifier to be unsta-
ble. On the other hand, the choice of basis functions is still
an open problem. The most common approach is to throw
away the eigenvectors corresponding to the little eigenval-
ues in whitening stage. However, the choice criterion of this
approach satisfies the least reconstruction error in PCA, but
is not optimal for ICA.

In order to improve the performance and overcome
the shortcoming of ICA classifier, we proposed an en-
hanced ICA method adopting randomly resampling strat-
egy, named as random independent subspace (RIS).
Let X = [x1, x2, . . . , xn] be the training set matrix,
wheren is the number of training samples. Each column

Fig. 1. Flow graph of RIS3.

xi = (xi1, xi2, . . . , xiN )T ∈ RN is anN-dimensional fea-
ture representation for a training sample. Usually,N is
very large. We randomly resampleK r-dimensional fea-
ture subspaces from theN-dimensional feature space,
wherer < N . These sampling is repeated with replacement.
Therefore the new training set areXk = [xk

1, xk
2, . . . , xk

n],
k = 1, 2, . . . , K, wherexk

i = (
xk
i1, x

k
i2, . . . , x

k
ir

)
. Then, one

and only one ICA classifierCk is constructed using ther-
dimensional sampled training setXk. For a new testy, it is
projected into each subspace and given a predictionCk(y)

by each ICA classifierCk. The final prediction is decided
by aggregating all predictions using a final decision rule,
C(y) = aggre

{
C1(y), C2(y), . . . , CK(y)

}
.

We can also resample in the whitened feature space as
well as the original feature space. To verify the effect of
the two resampling respectively, we develop three different
schemes for RIS. The first one is to only resample in the
original feature space, which is named RIS1. The second one
is to only resample in the whitened feature space in whiten-
ing stage, which is named RIS2. The third one is a two-level
cascade resampling structure that resamples both the orig-
inal feature space and the whitened feature space, which is
named RIS3. The whole flow graph is depicted inFig. 1.
The pseudocodes of algorithms are shown inFigs. 2–4.
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Fig. 2. Random independent subspace scheme I.

Fig. 3. Random independent subspace scheme II.

Fig. 4. Random independent subspace scheme III.
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In this paper, we use majority voting as the final decision
rule, which simply assigns the test sample with the class
label that appears most frequently inCk(y), k=1, 2, . . . , K.

4. Experiments

Face recognition is a typical pattern recognition problem.
Without loss of generality, we use face recognition to as-
sess the feasibility of RIS. Experiments are performed on
FERET face database[19]. We use 1002 front view images
as training set. The gallery FA and probe FB contain 1195
objects. There is one and only one image of individual in FA
and FB. These images are acquired under variable illumina-
tion, facial expression, and time (duplicate images). All the
images have been reduced to 48× 54 by eye location. The
coordinates of two eyes are set as (12,14) and (36,14). His-
togram equalization is performed as pre-processing on all
images. A few original and preprocessed samples are shown
in Fig. 5.

For the subsequent analysis, each image is represented
using a 2592-dimensional vector given by the luminance
value at each pixel location. We organize the training set
matrixX so that the images are in columns and the pixels are
in rows, i.e.,X has 2592 rows and 1002 columns. Gallery
FA and probe FB are also organized as the training set.

Same as ICA, RIS is an unsupervised method. For com-
parability, we compare RIS with two popular unsupervised
methods besides ICA, i.e., PCA (eigenfaces) and Kernel
PCA on face recognition. Cosine distance has been verified
to be superior to other distance metric in[20], so all ex-
periments are implemented with cosine distance and nearest
neighbor classifier:

d(yi, yj ) = 1 − yT
i · yj

‖yi‖ · ‖yj‖ . (4)

If the nearest neighbor from the gallery is of the same object
as the probe, then the trial is a success. Otherwise it is a
failure.

4.1. Random Independent Subspace scheme I

As described in Section 3, we adopt resampling strategy
only in the original feature space whose dimensionality is
48× 54= 2592. The number of training samples is 1002.
We select randomly 10 subspaces with replacement, each of
which contains 1296 (half of 2592) features from the orig-
inal feature space. In subspace, the new training setXk,
k=1, 2, . . . , 10, has 1296 rows and 1002 columns. One ICA
classifier is constructed on each subspace. For a new test
sample, it is projected into each subspace and given a pre-
diction by each ICA classifier. Then 10 classifiers are com-
bined into an ensemble classifier using majority voting. The
RIS1 increases virtual samples and reduces the dimension-
ality of the original feature space through resampling.

Fig. 5. Upper row is the original images and bottom row is pre-processed
images.
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Fig. 6. The accuracy of 10 different classifiers, ICA and RIS1.
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The best accuracies of 10 different classifiers are illus-
trated inFig. 6 . The results show that the accuracy of in-
dividual classifier is no more than 82%, but the ensemble
classifier (RIS1) combining 10 classifiers can increase near
3%. Fig. 7 shows that when the number of resampling in-
creases from 1 through 10, the recognition rate increases
quickly from 81.07% to 84.77%, then there are no obvious
improvements when the number of resampling increased. It
suggests that ensemble of 10 classifiers is appropriate and
efficient. Fig. 9 reports the performance of RIS1 in detail.
RIS1 achieves 84.77% recognition accuracy while that of
ICA is 82.76%. These experimental results show that resam-
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Fig. 8. The accuracy of 10 different classifiers, ICA and RIS2.

pling in the original feature space can improve the perfor-
mance of ICA classifier.

4.2. Random Independent Subspace scheme II

In scheme 2, PCA technique is used firstly to whiten the
original data, and then we resample the whitened feature
space whose bases are the eigenvectors. Because zero and
little eigenvalues usually correspond to noise, we only retain
the eigenvectors corresponding to the 150 leading eigen-
values as bases. In order to improve the accuracy of each
classifier, we fix these bases corresponding to the 20 largest
eigenvalues, and the others are sampled randomly from the
residual 130 bases. Then ICA classifier is constructed on the
subspace. Compared with conventional choice strategy in
standard ICA, thescheme 2avoids loss of some important
bases corresponding little eigenvalues.

Fig. 8 shows that the performances of 10 individual clas-
sifiers are unstable. The worst recognition rate is 79.58%
while the best recognition rate is 82.25%. The ensemble
classifier (RIS2) can get 84.27% combining the 10 classi-
fiers using majority vote.Fig. 7 shows that the number of
resampling has significant effect on the performance. When
the number of resampling increases from 1 through 5, the
recognition rate increases from 80.82% to 84.27%. How-
ever, there are not obvious improvement when continue
to increase the number of resampling. InFig. 9, compari-
son between RIS2 and ICA suggests that resampling in the
whitened feature space can also improve the performance of
classifier.

4.3. Random Independent Subspace scheme III

In scheme I, resampling the original feature space alle-
viates the negative effect brought by the small sample size
problem, but the choice problem of basis functions is still
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Fig. 9. Comparison RIS with ICA, PCA, and Kernel PCA.

unresolved. On the contrary, scheme II only resolves the
choice problem of basis functions while the small sample
size problem is unresolved. To addresses the two problems
at the same time, scheme III adopts a two-level cascade re-
sampling structure. The first resampling is in the original
feature space (Level 1). The second resampling is in the
whitened feature space (Level 2). All classifiers in Level 2
give voting to their parent classifiers in Level 1, and then all
classifiers in Level 1 vote to the final prediction.

We resample 10 times in the original feature space and 5
times in the orthogonal whitened feature space, respectively.
As shown inTable 1, by aggregating 5 classifiers in Level
2 (in whitened feature space), the classifiers in Level 1 are
obvious better than their child classifiers in Level 2. For ex-
ample, the first classifier in Level 1 get 80.42%, which is
combined from 5 child classifiers (in Level 2) whose accu-
racies are 75.56%, 76.73%, 76.65%, 77.82% and 78.57%.
Further, the 10 classifiers in Level 1 are aggregated into an
ensemble classifier that obtains a best accuracy rate 85.36%.
These experimental results suggest that the two-level cas-
cade resampling structure can get a stronger classifier. As in
RIS1 and RIS2, we also consider the effect of the number
of resampling. Experiments show that there is no significant
improvement with more resampling.

A comprehensive comparison is reported inFig. 9. The
horizontal axis indicates the number of features used by
classifiers, and the vertical axis indicates recognition rate.
ICA, PCA and Kernel PCA, are compared with three
schemes of RIS with 20–100 features. Here, Kernel PCA
adopts Gaussian kernel function and kernel parameters
are set by cross-validation. The results show that the
three schemes of RIS have significant improvement com-
pared with ICA. At the same time, the performance of
RIS is also superior to PCA and KPCA. These experi-
mental results further suggest that the RIS is an effective
method.
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Table 1
Level 1 is accuracy of 10 classifiers each of which is aggregated from the corresponding 5 child classifiers in Level 2. Level 2 is accuracy of 5 classifiers
constructed in sampled whitened feature subspace. The final is the best accuracy of RIS3 aggregated from the 10 classifiers in Level 1.

Accuracy rate (%) 1 2 3 4 5 6 7 8 9 10

Level 2 1 75.56 78.91 76.48 77.48 77.82 77.99 77.99 78.99 77.48 77.99
2 76.73 76.82 77.57 77.90 77.90 77.99 76.65 78.49 77.82 77.99
3 76.65 78.91 77.32 77.90 76.48 77.07 76.56 77.40 76.31 78.07
4 77.82 77.82 76.90 75.64 77.32 78.91 77.82 78.41 78.32 78.49
5 78.57 76.56 75.56 78.82 79.24 78.07 77.40 78.66 77.57 77.99

Level 1 80.42 81.42 79.83 80.42 81.00 80.84 80.25 81.51 80.59 80.17

Final 85.36

5. Discussions and conclusions

In pattern classification using ICA classifier, we often en-
counter two challenging problems: small sample size prob-
lem and the choice problem of basis functions, which re-
sults in the unstable performance of ICA classifier. In or-
der to improve the performance of ICA classifier, we pro-
posed an enhanced ICA algorithm, Random Independent
Subspace (RIS), which adopted random sampling strategy
to produce a set of subspaces, and one ICA classifier is
constructed on each subspace. Then all ICA classifiers are
aggregated into an ensemble classifier using majority vot-
ing. In this paper, we give three schemes for RIS. Scheme
I resamples in the original feature space, which reduces
the dimensionality of feature space and increases the vir-
tual samples for ICA classifiers so that the negative effect
brought by small sample size is alleviated. The scheme II
resamples in whitened feature space, which can effectively
deal with the choice problem of basis functions. In order
to possess the merits of schemes I and II, the scheme III
adopts a two-level cascade resampling structure, which not
only resamples in the original feature space, but also resam-
ples in whitened feature space. Although resampling twice
in scheme III increase the computational complexity, most
of computation exists in training stage which is offline im-
plemented, the test stage of scheme III just increases lit-
tle time consumption compared with schemes I and II. The
experimental results of face recognition suggest that the
scheme III can significantly improve the performance of ICA
classifier.
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