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Abstract

It is well known that in order to calibrate a single camera
with a one-dimensional (1D) calibration object, the object
must undertake some constrained motions, in other words,
it is impossible to calibrate a single camera if the object mo-
tion is of general one. For a multi-camera setup, i.e., when
the number of camera is more than one, can the cameras be
calibrated by a 1D object under general motions? In this
work, we prove that all cameras can indeed be calibrated
and a calibration algorithm is also proposed and experi-
mentally tested. In contrast to other multi-camera calibra-
tion method, no one calibrated ”base” camera is needed.
In addition, we show that for such multi-camera cases, the
minimum condition of calibration and critical motions are
similar to those of calibrating a single camera with 1D cal-
ibration object.

1. Introduction

In 3D computer vision, camera calibration is a necessary
step in order to extract metric information from 2D images.
According to the dimension of the calibration objects, the
camera calibration techniques can be roughly classified into
four categories. In 3D reference object calibration an object
with known geometry in 3D space is used [1, 15, 16]. In 2D
plane based calibration planar patterns are used [8, 12, 18].
In 1D object based calibration a 1D segment with three or
more markers is used [2, 17, 19]. In 0D approach or self-
calibration only correspondences of image points or some
special kinds of motion are used and it does not use any
physical calibration objects [3, 6, 7, 10, 13].

In the above techniques, much work has been done ex-
pect for 1D object based calibration. Camera calibration us-
ing 1D object was proposed by Zhang in [19]. Here the 1D
calibration object consists of a set of three or more collinear
points with known distances. The motion of the object is
constrained by one point being fixed. Hammarstedt et al.
analyze the critical configuration of 1D calibration and pro-
vide simplified closed-form solutions in Zhang’s setup [2].

Wu et al. prove that the rotating 1D object used in [19] is es-
sentially equivalent to a familiar 2D planar object, and such
equivalence still holds when 1D object undergoes a planar
motion rather than the rotation around a fixed point [17].

The advantages of using 1D objects for calibration are:
(1). 1D objects with known geometry are easy to construct.
In practice, the 1D object can be constructed by marking
three points on a stick. (2). In a multi-camera setup, all
cameras can observe the whole calibration object simultane-
ously, which is a prerequisite for calibration and hard to sat-
isfy with 3D or 2D calibration objects. A shortcoming of the
1D calibration is that the 1D object should be controlled to
undertake some especial motions, such as rotations around
a fixed point and planar motions. If the motions of 1D ob-
ject are of general rigid motions, can cameras be calibrated?
The problem will be discussed in this work. We know that
camera calibration is impossible by using a single camera
to observe the 1D object under general rigid motions [19].
However, the following result in this paper is proved: If in
a multi-camera, all cameras synchronously observe the 1D
object undergoing at least 6 times general motions (assum-
ing these motions do not lie on a conic), then the intrinsic
parameters and the pose relations of all these cameras can
be calibrated. It is different with [5] that there is no need of
one ”base” camera being calibrated in advance.

The paper is organized as follows. Some preliminaries
are introduced in Section 2. In Section 3 calibration al-
gorithm for the camera set is presented. Then calibration
experiments are reported in Section 4. Section 5 are some
concluding remarks.

2. Preliminaries

2.1. Camera model

In this paper, a 2D point is denoted by m = [u, v]T , a
3D point by M = [X,Y,Z]T . The corresponding homo-
geneous vector is denoted respectively by m̃ = [u, v, 1]T ,
M̃ = [X,Y,Z, 1]T . With the standard pinhole camera
model, the relationship between a 3D point M̃ and its image
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Figure 1. Illustration of 1D calibration objects.

point m̃ (perspective projection) is given by

sm̃ = K[R|t]M̃, K =


 α γ u0

0 β v0

0 0 1


 (1)

where s is a scale factor (projection depth of 3D point M̃),
P = K[R|t] is called the camera matrix, [R|t], called the
extrinsic matrix, is the rotation and translation which relates
the world coordinate system to the camera coordinate sys-
tem. And K is called the camera intrinsic matrix, with α, β
denotes the scale factors in the image u and v axes, γ the
skew, and [u0, v0] the principal point.

2.2. 1D calibration object

Assume 1D calibration object has three points say A, B,
C, and ||A − C|| = d1, ||B − C|| = d2. (Here we only
consider the minimal configuration of 1D calibration object
which consists of three collinear points.) For the conve-
nience of statement, the 1D calibration object is also said
the line-segment (ABC). Moreover, the line defined by
the line-segment (ABC) is denoted by LABC.

3. Calibration algorithm

Refer to Figure 1. Given the image points
{aij ,bij , cij |j = 1, 2, ..., n, i = 0, 1, 2, ...,m} of the
line-segment (ABC) under the jth rigid motion in the
ithcamera, our goal is to compute the metric projection ma-
trices under the 0th camera coordinate system:


P(e)

0 = K0[I|0]
P(e)

1 = K1[R1|t1]
...

P(e)
m = Km[Rm|tm]

. (2)

The parameters of multi-camera system can be linearly de-
termined. Firstly vanishing points of 1D calibration objects
are computed. With these vanishing points, infinite homo-
graphies between cameras can be computed. Then the affine

projection matrices and the metric projection matrices can
be gained. Unlike the traditional stratified calibration, our
algorithm does not need any prior knowledge on the cam-
eras. And unlike the existing 1D calibration methods, 1D
calibration objects can undertake general rigid motions in-
stead of especial motions [17, 19] and there is no need of
one calibrated ”base” camera [5].

3.1. Affine calibration

Let the 1D calibration object undertakes a series of
general rigid motions in the field of multi-camera’s view.
The correspondence of image points {aij ,bij , cij |j =
1, 2, ..., n, i = 0, 1, 2, ...,m} can be established.

Since the geometry of 1D calibration object is known, we
can compute the vanishing point vij of the line LAjBjCj

in
the ith camera. The simple ratio of the collinear points Aj ,
Bj and Cj is

Simple(Aj ,Bj ;Cj) = d1/d2 (3)

Then the cross ratio of the collinear points
{Aj ,Bj ;Cj ,Vj∞} is also d1/d2, i.e.

Cross(Aj ,Bj ;Cj ,Vj∞) = d1/d2 (4)

where Vj∞ is the infinite point of the line LAjBjCj
. By

the perspective transformation preserving the cross ratio, we
can obtain the linear constraints on vij :

Cross(aij ,bij ; cij ,vij) = d1/d2. (5)

Hence, we can obtain the vanishing points vij .
Since {v0j ↔ vij |j = 1, 2, ..., n} are the image point

correspondences of the infinite plane π∞, the infinite ho-
mography between the 0th camera and the ith camera sat-
isfy the following equations:

Hi∞ṽ0j = λijṽij , (i = 1, 2, ...,m; j = 1, 2, ..., n) (6)

Eliminating unknown scale factors λij , we can obtain linear
constrained equations:

[ṽij ]×Hi∞ṽ0j = 0, (i = 1, 2, ...,m; j = 1, 2, ..., n). (7)

By solving the linear equations (7), we can determine the
infinite homographies Hi∞.

With homographies Hi∞ and image points
{aij ,bij , cij}, the projective reconstruction of points
and cameras can be computed simultaneously with the
technique of projective reconstruction using planes [11].
Considering that the plane inducing homographies Hi∞ is
the infinite plane, the computed structure and motion are
affine. So we have the affine camera matrices:


P(a)

0 = [I|0]
P(a)

1 = [H1∞|e1]
...

P(a)
m = [Hm∞|em]

. (8)



and the affine reconstructions of the space points
{A(a)

j ,B(a)
j ,C(a)

j }.

3.2. Metric calibration

Based on the affine projection matrices showed in (8),
the metric camera matrices must be of the following form
[4]:

P(e)
i = P(a)

i diag(K0, 1), (i = 0, 1, 2...,m) (9)

and the metric reconstruction of the space points
{A(e)

j ,B(e)
j ,C(e)

j } satisfy the following equations:




A(e)
j = K−1

0 A(a)
j

B(e)
j = K−1

0 B(a)
j

C(e)
j = K−1

0 C(a)
j

, (j = 1, 2, ..., n) . (10)

Here K0 is the intrinsic parameter matrix of the 0th camera.

Since ||A(e)
j − C(e)

j || = d1; ||B(e)
j − C(e)

j || = d2, from
equations (10) we have the linear constraints on K0:{

(C(a)
j − A(a)

j )T �0(C
(a)
j − A(a)

j ) = d2
1

(C(a)
j − B(a)

j )T �0(C
(a)
j − B(a)

j ) = d2
2

, (11)

where �0 = K−T
0 K−1

0 .
Remark 1. Since the affine transformations preserve the
sample ratio of three collinear points, the two equations of
(11) are not independent of each other for each j. Hence, as
is the calibration method with 1D object under especial mo-
tions, in our method that 1D object moves at least 6 times is
also necessary for calibration.
Remark 2. From (11), it is not difficult to see that the crit-
ical motions of the 1D object are similar to those of the
calibration method with 1D object rotating around a known
fixed point, i.e., the motion is critical if and only if the in-
finite points {Ṽj = C̃j − Ãj |j = 1, 2, . . ., n} determined
by the 1D object lie on a conic.

From (11), we obtain the linear solution of �0, and ob-
tain the intrinsic parameter matrix, K0, using Cholesky de-
composition of �−1

0 . Hence, the metric projection matrices
are: 


P(e)

0 = [K0|0]
P(e)

1 = [H1∞K0|e1]
...

P(e)
m = [Hm∞K0|em]

(12)

and the metric reconstructions of the space points are:




A(e)
j = K−1

0 A(a)
j

B(e)
j = K−1

0 B(a)
j

C(e)
j = K−1

0 C(a)
j

. (13)

Using QR decomposition, we can extract the intrinsic pa-
rameter matrix, Ki, and the motion parameters, Ri and ti,
of the ith camera from the metric projection matrix,

P(e)
i = Ki[Ri|ti], (i = 0, 1, 2...,m). (14)

3.3. Bundle adjustment

The above solution is obtained through minimizing an
algebraic distance which is not physically meaningful. We
can refine it through bundle adjustment.

Bundle adjustment is a nonlinear procedure involving the
projection matrices and space points, attempting to maxi-
mize the likelihood of the reconstruction, being equivalent
to minimizing the reprojection error when the noise on mea-
sured image points has an identical and independent Gaus-
sian distribution. Here bundle adjustment is to solve the
following nonlinear minimization:

min
P̂i,M̂j

∑
ij

d(mij , P̂i[M̂j , 1]T )2, (15)

where d(·, ·) is the geometric distance between two points,
P̂i and M̂j ∈ {Âj , B̂j , Ĉj} are estimated projection ma-
trices and 3D points, mij is the detected (measured) image
point of 3D point Mj in the ith camera. Here Aj , Bj and
Cj are collinear, so they are not independent. Since the
direction of the line LAjBjCj

can be expressed as:

nj =
Cj − Aj

‖Cj − Aj‖ ≡

 sinφj cos θj

sinφj sin θj

cos φj


 , (16)

the point Bj and Cj are given by

Bj = Aj + ||Aj − Bj ||nj = Aj + (d1 − d2)nj (17)

and

Cj = Aj + ||Aj − Cj ||nj = Aj + d1nj . (18)

Let âij (b̂ij , ĉij) be the reprojection of Aj (Bj , Cj).
Then the minimization problem (15) can be rewritten as:

min
P̂i,Âj ,φ̂j ,θ̂j

m∑
i=0

n∑
j=1

(||aij − âij ||2 + ||bij − b̂ij ||2

+||cij − ĉij ||2) (19)

Regarding the metric reconstruction in the above section as
an initial value, the nonlinear minimization can be done us-
ing the Levenberg-Marquardt algorithm [9].

4. Experiments

The proposed algorithm has been tested on computer
simulated data and real image data.
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Figure 2. The planform of synthetic experimental setup in one trial.

camera 1st 2nd 3rd 4th 5th 6th

α 1200 1000 1050 1100 1100 1200
β 1000 1200 1050 1000 1100 1050
γ 0 1.0 2.0 0 -1.0 -2.0

Table 1. Intrinsic parameters of six simulated cameras.

4.1. Simulated data

We perform a lot of simulations with two cameras, three
cameras, six cameras and so on. Due to the limitation of
space, we only report results of simulation with six cameras.

In the simulation, the six simulated cameras’ intrinsic
parameters are shown in Table 1. All the principal points
are [512, 384] and the image resolutions are of 1024× 768.
The first camera locates at one vertex of an regular hexagon
whose side is of 250. And the optical axis coincides with
the line joined the vertex to the common center of the reg-
ular hexagon. Each of the other five cameras is inside a
cube of 20, and the cube’s center is at one of the other five
vertexes of the regular hexagon. And for each of the other
five cameras, the angle between the optical axis and the
line joined the corresponding vertex to the common cen-
ter of the regular hexagon is of a random value between -5
and +5 degrees. The length of the simulated line-segment
(ABC) is 90, and point B is the trisection point of (ABC)
and ‖AB‖ = 30. So we have d1 = 90 and d2 = 60. Let
the line-segment (ABC) undertake 20 times of general mo-
tions inside the cube of 120 whose center coincides with
the common center of the regular hexagon, and insure the
image of line-segment (ABC) inside 1024 × 768. Figure 2
shows the planform of cameras’ setup and 1D object’s po-
sition in one trial.

Add Gaussian noise with mean 0 and standard deriva-
tions σ to image points. Here we use two methods, the lin-
ear 1D calibration algorithm and the bundle adjustment al-
gorithm, to calibrate the camera set. The estimated camera

(a) the 1st camera (b) the 2nd camera (c) the 3rd camera

(d) the 1st camera (e) the 2nd camera (f) the 3rd camera

Figure 5. Sample images of camera set for 1D calibration.

(a) the 1st camera (b) the 2nd camera (c) the 3rd camera

Figure 6. Sample images of camera set for 2D calibration.

(a) the 1st camera (b) the 2nd camera (c) the 3rd camera

Figure 7. The image triplet of 3D object for reconstruction.

parameters are compared with the ground truth, and RMS
errors are measured. Vary the noise level σ from 0.2 pixels
to 2.0 pixels in steps of 0.2pixels. At each noise level, 500
independent trials are performed, and the results are shown
in Figure 3 and 4.

Figure 3 displays the relative errors of intrinsic parame-
ters. Here we measure the relative errors with respect to α,
as proposed by Triggs in [14]. Errors increase almost lin-
early with the noise level. The bundle adjustment can pro-
duce significantly better results than the linear algorithm. At
the 2.0 pixels noise level, the errors for the linear algorithm
are about 10%, while those for the bundle adjustment are
about 2%. Figure 4(a), 4(b), 4(c), 4(d) and 4(e) display the
errors of the other cameras’ Euler angles relative to the first
camera. Figure 4(f) displays the errors of the other cameras’
translation relative to the first camera. These errors also in-
crease almost linearly with the noise level. And the bundle
adjustment can significantly refine the results of the linear
algorithm.
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(c) the 3rd camera
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(d) the 4th camera
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(e) the 5th camera
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(f) the 6th camera

Figure 3. The relative errors of six simulated cameras’ intrinsic parameters.

4.2. Real Images

For the experiment with real data, three cameras are
used. The image resolution of three cameras is of 2048 ×
1536, 1024 × 768 and 1024 × 768 respectively. We used
three toy beads and strung them together with a stick. The
distance between the first and the second bead is 30cm, and
that of the second and the third is 60cm. Put one end of
the stick on a tripod, let it undertake general rigid motion.
Fifteen triplets of images are taken,two of them are shown
in Figure 5. Figure 5(a), 5(b) and 5(c), corresponding to the
1st camera, the 2nd camera and the 3rd camera respectively,
is a triplet corresponding to the 11th motion. Figure 5(d),
5(e) and 5(f) is another triplet corresponding to the 12th mo-
tion. Here white circle marks are used to give prominence
to beads in images.

The beads are extracted from images manually. The
cameras’ parameters are calibrated with the proposed 1D
algorithm with bundle adjustment. For comparison, we also
used the 2D plane-based calibration technique described in
[4] to calibrate the same cameras. Fifteen triplets of im-
ages are taken, and the 4th of them are shown in Figure 6.
Figure 6(a), 6(b) and 6(c) respectively correspond to the 1st
camera, the 2nd camera and the 3rd camera.

camera α β u0 v0 γ

1D 2586.24 2559.96 1106.53 629.34 2.801
2D 2569.89 2580.73 1098.45 640.36 0.20
1D 1170.90 1100.07 451.50 357.10 1.342
2D 1129.35 1134.64 485.25 344.73 -3.52
1D 1148.45 1132.17 449.68 308.48 -1.423
2D 1141.35 1151.63 492.50 324.72 -1.66

Table 2. Calibration results of three cameras.

method θ12 θ13 θ23 d̄ σd

1D 89.32 86.92 90.52 4.05 0.47
2D 88.47 87.14 88.77 4.06 0.48

Table 3. Reconstruction results with calibration results.

Three cameras’ intrinsic parameters with 1D and 2D cal-
ibration methods are shown in Table 2. For each camera the
first row shows the estimation from the 1D calibration al-
gorithm, while the second row shows the result of the 2D
plane-based method. We can see that there is little differ-
ence between two methods’ results. We also perform recon-
struction with calibration results to compare two methods.
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(b) the 3rd camera’s rotation
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(c) the 4th camera’s rotation
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Figure 4. The relative errors of six simulated cameras’ extrinsic parameters.

The image triplet of 3D calibration object for performing
reconstruction is shown in Figure 7. The reconstruction re-
sults and the pose relations of three cameras are shown in
Figure 8. Three planes of the 3D calibration object are fit-
ted with reconstructed 3D points, and angles between two of
them, θ12, θ13 and θ23 (whose ground truth is 90 degrees),
are computed, as shown in Table 3. The ground truth of dis-
tance between each pair of neighbor corner points is 4.0cm.
The mean d̄ and standard deviation σd of these distances
computed by the reconstructed 3D points are also shown in
Table 3. We can see that the two methods are comparable.
In some cases, the 1D calibration can outperform the 2D
calibration. It may be chiefly because: 1) our 2D pattern,
a printed paper on a whiteboard, is not accurate enough; 2)
the 1D object can be freely placed on the interested scene
volume, which can increase the calibration accuracy.

There is little difference between the reconstruction re-
sults of 1D calibration and the ground truth. The difference
may come from several sources. One is the image noise
and inaccuracy of the extracted data points. Another is our
current rudimentary experimental setup: There was eccen-
tricity between the holes made manually and the real axis of
the bead, which inevitably results in errors of the extracted
data points. Besides, the positioning of the beads was done

with a ruler with barely eye inspection.
Although there are so many error sources, the proposed

1D calibration algorithm is comparable with the 2D plane-
based method. This demonstrates the applicability of pro-
posed 1D calibration algorithm in practice.

5. Conclusions

In this paper, we have investigated the possibility of
multi-camera calibration using 1D objects undertaking gen-
eral rigid motion. A linear algorithm for multi-camera cal-
ibration is proposed, followed by a bundle adjustment to
refine the results. Both the computer simulated and real im-
age data have been used to test the proposed algorithm. It
shows that the proposed algorithm is valid and robust.

In addition, for multiple cameras mounted apart from
each other, all cameras must observe the whole calibration
object simultaneously, which is a prerequisite for calibra-
tion and hard to satisfy with 3D or 2D calibration objects.
This is not a problem for 1D object. Most importantly,
the proposed calibration algorithm is very easier and more
practical due to 1D object performing general rigid motion
instead of rotation around a fixed point or planar motion
and no need of one calibrated ”base” camera.
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Figure 8. Reconstruction results of 3D object.
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