
Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

AN ITERATIVE ALGORITHM FOR ROBUST KERNEL PRINCIPAL
COMPONENT ANALYSIS

LEI WANG1, YAN-WEI PANG2, DAO-YI SHEN1, NENG-HAI YU1

1MOE-MS Key Laboratory of Multimedia Computing and Communication, Department of Electronic Engineering and
Information Science, University of Science and Technology of China, Hefei, 230027, China
2School of Electronic Information Engineering, Tianjin University, Tianjin, 300072, China

E-MAIL: wlei@ustc.edu, pyw@ustc.edu, dyshen@ustc.edu, ynh@ustc.edu.cn

Abstract:
Principal Component Analysis (PCA) has been proven to

be an efficient method in dimensionality reduction, feature
extraction and pattern recognition. Kernel Principal
Component Analysis (KPCA) can be considered as a natural
nonlinear generalization of PCA, which performs linear PCA
in a high dimensional space implicitly by using kernel trick.
However, both conventional PCA and KPCA suffer from the
deficiency of being sensitive to outliers. Existing robust KPCA
has to eigen-decompose the Gram matrix directly in each step
and is much more computationally infeasible due to the large
size of the matrix when the number of training samples is
large. By extending existing robust PCA algorithm using
kernel methods, we present a novel robust adaptive algorithm
for calculating the kernel principal components. The proposed
method not only preserves the characteristic of capturing
underlying nonlinear structure of KPCA but also is robust
against outliers by restraining the effect of outlying samples.
Compared with existing robust KPCA methods, our method is
performed without having to store the kernel matrix, which
can reduce significantly the storage burden. In addition, our
method shows the potential of expansibility to the incremental
learning version. Experimental results on synthetic data
indicate that our improved algorithm is effective and
promising.

Keywords:
Robust principal component analysis; Robust kernel

principal component analysis; Outliers; Dimensionality
reduction; Feature extraction

1. Introduction

Principal Component Analysis (PCA) is an efficient
method for dimensionality reduction, feature extraction,
and has been widely used in many fields, such as image
processing, statistical analysis and pattern recognition [1].
Conventional PCA is to find a linear orthogonal basis
transformation by an eigen-decomposition of the centered
covariance matrix of the data set. Dimensionality reduction

and feature extraction are achieved by projecting input data
into the subspace spanned by a set of principal eigenvectors
corresponding to the largest eigenvalues.

Linear PCA is suitable to describe data with Gaussian
distribution, for it takes only second-order correlations into
account. Kernel PCA (KPCA) can be considered as a
natural nonlinear generalization of PCA, which can extract
nonlinear structure from data set [2]. The basic idea of
KPCA is to fist map the input data into some feature space
via nonlinear map and then to execute linear PCA on the
mapped data. It is generally computationally infeasible to
execute PCA directly in the feature space due to the high
dimensionality of the feature space. KPCA enables this by
using kernel methods and formulating PCA as the
equivalent kernel eigenvalue problem. On account of the
attractive capability, KPCA based methods have been
extensively investigated [3],[4],[5],[6], and have showed
excellent performance.

However, both the classical PCA and KPCA
algorithms, implemented in the sense of least mean squared
error minimization, have the deficiency of instability when
input samples are spoiled by outliers, the usual situations in
many practical problems. As [7],[8] have reported, even
small amount of outliers will significantly deteriorate the
performance of standard PCA and KPCA. Nevertheless, it
is practically not easy to separate the outliers from the true
data. A number of efforts have been made to tackle this
problem, and existing representative algorithms to compute
the principal components robust against outliers include
[7],[9],[10],[11]. However, to the best of our knowledge,
the existing robust algorithms for kernel principal
components are very limited except [8].

In [8], Lu et al. proposed a robust KPCA, which had to
iteratively eigen-decompose the kernel matrix. The method
recognizes the outliers by setting a global threshold of
reconstruction error of the training samples and then
eliminating the samples exceeding the threshold. Instead of

1-4244-0973-X/07/$25.00 ©2007 IEEE
3484

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

giving an ascertain threshold, a percentage outliers take of
the training samples is assumed, such as 2%-5%. One
limitation of this method is that it is usually
computationally intensive. Because the size of kernel
matrix is the square of the number of training samples
which is generally very large in real situations, it becomes
much infeasible to maintain a large memory to store the
huge matrix and expend high computation to
eigen-decompose the matrix in each step. In addition, this
method recognizes the outliers in an explicit way, i.e. each
training sample is considered to be either a true data or an
outlier, which is not reasonable.

Among the methods for robust PCA [7],[9],[10],[11],
we focus on Xu et al.’s method [7]. In [7], the energy
function for original PCA is first generalized by adding a
binary decision field so that outliers are dealt with explicitly
in order to enhance the robustness. Then a Gibbs
distribution is defined using the generalized energy function,
and the marginal distribution is also obtained which defined
an effective energy function. In this way, the question is
translated into the maximization of the marginal
distribution, and a self-organizing rule for robust PCA is
developed finally,

In this paper, a novel Iterative Robust KPCA (IRKPCA)
is presented based on the research of Xu et al. [7] by
kernellizing the adaptive rule of computing principal
components. The resulting method enhances the robustness
by restraining the effect of outliers efficiently. This is
achieved by adding a weight term in the update rule which
considers the outliers implicitly and smoothly. Furthermore,
the proposed algorithm has three accessional merits: first,
by the virtue of iterative computation, no large memory and
direct eigen-decomposition are required to deal with the
huge kernel matrix; second, it preserves the nonlinearity
property of KPCA; third, it shows the potential of
expansibility to incremental version.

The rest of this paper is organized as follows. Section
2 introduces briefly the original PCA, Xu et al.’s robust
PCA and the standard KPCA. Section 3 formulates our
Iterative Robust Kernel PCA algorithm. In Section 4,
experimental results on synthetic data are presented. Finally,
conclusions are given in Section 5.

2. Previous work

2.1. Principal component analysis

Given a data set with l samples xi∈ℜn and zero

mean , i=1,...,l, classical PCA is to solve

the following optimization problem:
1

(1/) 0l
ii

l x
=

=∑

2

1
() (1/) || ||l

i ii
J w l x u

=
= ∑ −

−

 (1)

where u=wy and y=wTx. This is equivalent to solve the
eigenvalue problem
 (2) w Cwλ =
for eigenvalues λ≥0 and eigenvectors w∈ℜn\0. C is the

covariance matrix .
1

(1/) l T
i ii

C l x x
=

= ∑
While efficient and reliable numerical methods are

discussed representatively in [12], adaptive approaches to
PCA analysis are discussed e.g. in [1],[13]. From the
computational point of view, it can be more advantageous
to solve the eigenvalue problem (2) by iterative or adaptive
methods which do not need to store and calculate the matrix
C directly. This is particularly useful when the matrix size
is large. Another drawback of PCA is that it is sensitive to
outliers. In contrast to PCA, robust PCA is robust against
outliers.

2.2. Robust PCA

Robust PCA has been studied for many years, and
many algorithms have been presented [7],[9],[10],[11]. In
this paper, we fix our attention on the method of Xu et al.
[7]. We review it here briefly.

To consider the effect of outliers, [7] generalizes the
energy function defined in (1) to the following formula by
adding a penalty item, which indicates the energy portion
contributed by outliers:

1 1
(,) (,) (1)l l

i i ii i
E w V z x w Vη

= =
= +∑ ∑V (3)

where , V is a binary field with
V

2(,) || ||i iz x w x u= − i

i∈0,1, i=1,...,l, and η is a scalar threshold.
In (3), z(xi,w) is the energy portion contributed by xi. Vi

can be considered as a decision indicator for deciding
whether xi is a normal sample or an outlier. When z(xi,w)< η,
Vi should be set to 1 as it is more reasonable to consider xi
as a true sample and set to 0 otherwise.

It is not easy to minimize E(V,w) with respect to V and
w simultaneously because it is a mixture of discrete and
continuous optimization. This is then achieved by defining
a Gibbs distribution (,)() (1/) E wP ,w Z e β−= VV and then
maximizing the marginal probability distribution

eff ()
margin () /()E w NP w e Zeβ βη−= by averaging each Vi. Finally,

the problem is equivalent to maximize the generalized
energy function

[(,)]
eff

1() log{1 }iz x w

i
E w e β η

β
− −= − +∑ (4)

3485

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

Eeff(w) can be regarded as a generalization of a robust
redescending M-estimators [14] to the PCA problem. In (4)
each item in the summation is close to z(xi,w) if it has a
small value, but becomes constant as z(xi,w)→∞. In this
way, outliers which are more likely to yield large z(xi,w) are
restrained effectively while the true samples yielding small
z(xi,w) are affected very slightly.

The robust adaptive rules to compute first k principal
components are

((()), ())

2

1(1) () ()
1

 (() () () ())

j jj j z x t w t

j
j j j

w t w t t
e

x t y t w t y t

β ηα −+ = + ⋅
+

⋅ −
 (5)

1() ()x t x t= (6)

() () () ()j
r r

r j

x t x t w t y t
<

= −∑ ,j=2,…,k (7)

() () ()T j
j jy t w t x t= (8)

where x(t) is the sample selected randomly from l input
examples at time t. xj(t), which is obtained by removing
first j-1 reconstruction images, is the residual portion of
input x(t) to compute the jth vector wj(t), α(t) is the learning
rate, β is the Gibbs parameter and η is the penalty threshold
defined in (3). Formally, the update rules (5)-(8) can be
considered as the generalization of the unrobust k-PCA rule
GHA [15].

2.3. Kernel PCA

As stated in section 1, linear PCA fails to represent the
underlying nonlinear structure of data, for it takes only
second-order correlations into account. As a natural
nonlinear extension of PCA, Kernel PCA (i.e. KPCA)
computes the principal components in a possibly
high-dimensional feature space H which is mapped from
the input data space by a nonlinear map:

:
 ()

n

x x
Φ ℜ →

Φ
H

The feature space H is also called Reproducing Kernel
Hilbert Space (RKHS).

Since the dimensionality of the feature space H may
be very high (possibly infinite), it is infeasible to carry out
the PCA analysis directly. Kernel techniques are then
introduced to avoid this difficulty, which enable us to
compute the inner product without having to evaluate the
map explicitly.

Without loss of generality, we assume that samples are

centered in the feature space, i.e. . Then

the covariance matrix of the mapped samples becomes
1

() 0l
ii

Φ x
=

=∑

1 TC
l

= ΦΦ (9)

where Φ=[Φ(x1),...,Φ(xl)]. We now have to find the
eigenvalues λ ≥ 0 and eigenvectors w∈H \ 0 satisfying

w wλ = C (10)
It is easy to know that each eigenvector w with λ ≥ 0 lies in
the space spanned by the training samples Φ(x1),...,Φ(xl),
therefore, w can be linearly expended by

1
()

l
i

i
i

w aΦ x
=

=∑ (11)

Substituting (9) and (11) into (10), and denoting the Gram
matrix as K=ΦΦT, we obtain lλKa=K2a. This leads to the
following equivalent kernel eigenvalue problem

l a aλ = K (12)
The above derivation assumes that all projected

samples Φ(x) are centered in H. When this is not true, the
Gram matrix K should be replaced by

ˆ
l l l= − − +K K 1 K K1 1 K1l

1

)⋅

)

 (13)
where 1l = (1/l)l×l.

Let λ1 ≥ λ2 ≥...≥ λl denote the eigenvalues of K in (12),
and a1,a2,…,al the corresponding complete set of
eigenvectors, with λk being the last nonzero eigenvalue. We
normalize a1,a2,…,al by requiring that the corresponding
vectors in H be normalized, that is

()j jw w⋅ = , for all j=1,...,k
By virtue of equations (11) and (12), this becomes to

, 1

, 1

1 (() ())

() (

l
p q
j j p q

p q

l
p q
j j pq j j j j j

p q

a a Φ x Φ x

a a a a a aλ

=

=

= ⋅

= = ⋅ =

∑

∑ K K
 (14)

Now, we can extract the nonlinear principal components of
the test sample x:

1 1
(()) (() ()) (,

l l

i i i i
i i

w Φ x a Φ x Φ x a k x x
= =

⋅ = ⋅ =∑ ∑ (15)

which is achieved by using kernel function without the
expensive operation that explicitly projects samples to the
feature space H.

There are great choices of kernel functions, and the best
selection of kernel remains an open topic. Presently,
polynomial kernel, radial basis function kernel and sigmoid

3486

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

kernel are widely used.

3. Proposed method for Robust KPCA

3.1. Derivation of Iterative Robust Kernel PCA

Although KPCA has been used in several applications
successfully and showed better performance than PCA, it
suffers from the sensitivity to outliers in the same way. In
this section, we present a novel robust method which is able
to compute kernel principal components.

Firstly, we rewrite the update rule (5) of Xu et al.’s
method for robust PCA to the matrix form:

(1) ()
()(()) () UT[() ()] ()) ()T T

t t
t x t y t y t y t t tα
+ =

+ −
W W

W Ζ
 (16)

where W(t) is a n×k matrix, with the jth column being the
eigenvector corresponding to the jth largest eigenvalue
when the iteration converges, y(t)=W(t)Tx(t), UT(•) sets all
elements below the diagonal of is matrix argument to zero,
thus making it upper triangular and Z(t) is a diagonal
matrix. For notational convenience, we denote the function

 ()

1()
1 zf z

eβ η−=
+

 (17)

Consequently, the jth value on the diagonal of Z(t) can be
expressed as f(z(xj,wj)). z(xj,wj) and xj orginate from (3) and
(7) respectively.

(((), ()))

1((,))
1

j
j

j
j z x t w t

f z x w
eβ η−

=
+

 (18)

Update rule (16) can be represented in the feature
space H as

(1) () ()

 ((()) () UT[() ()] ()) ()T T

t t t
Φ x t y t y t y t t t

α+ = +
−

W W
W Ζ

 (19)

where the input is the mapped data Φ(x(t)), the columns of
W(t) are vectors in H and y(t)=W(t)TΦ(x(t)).

From the derivation of KPCA, it is known that w(t)
can be expanded in the projected samples Φ(xi), as a result,

 (20) () ()t =W ΦA t
where A(t)=[a1(t),a2(t),...,al(t)] is the expansion coefficients
matrix with the size of l×k. Using this representation, the
update rule becomes

(1) () ()
((()) () UT[() ()] ()) ()T T

t t t
Φ x t y t y t y t t t

α+ = +
−

ΦA ΦA
ΦA Ζ

 (21)

The mapped pattern Φ(x(t)) can also be represented as
Φ(x(t))=Φb(t), where b(t)=[0,0,...,1,...,0]T is a vector in ℜl
with only the ith element is 1 when xi in input data set is

selected as x(t) at time t. In this way, the rule can be
rewritten solely in terms of the expansion coefficients as:

(1) ()
 ()(() () UT[() ()] ()) ()T T

t t
t b t y t y t y t t tα

+ =
+ −

A A
A Ζ

 (22)

where
 () ix t x= (23)

 (24) :,() ()T
iy t t= A K

1 2diag() ([(()), (()),..., (())])kt f z t f z t f z t=Z (25)
2

1

, ,:

() || () ||

 (,) 2 (,)

 2 ()

 ()

j
i p p

p j

l
q

i i i q p p
p j q

T
p p q q

p j q j

T
i i i p p p p

p j p j

p p
p j

z t Φ x w y

k x x k x x a y

y a a y

a y a y

a y

≤

≤ =

≤ ≤

≤ ≤

≤

= −

= −

−

= − −

∑

∑∑

∑∑

∑ ∑

∑

K

K K K

 (26)

In the same way, the kernel matrix K should be
preprocessed according to (13) such that the data are
centered in space H.

The rules presented above provide a practical
implementation of the robust PCA discussed in section 2.2.
in space H. Furthermore, it could be regarded as a robust
extension of the Kernel Hebbian Algorithm (KHA) [16],
which calculates kernel principal components iteratively.
During the implementation, A should be randomly
initialized and the update will converge if parameters α, β
and η are selected properly. For the details of the
convergence of KHA, refer to [16].

3.2. Parameters selection

There are three parameters in our procedure, the
learning rate α, the Gibbs parameter β and the scalar penalty
threshold η, which need to be selected reasonably. The
larger learning rate α is, the faster the learning and the
bigger the fluctuation in the learning process. The inverse
of β decides the sharpness of the Gibbs distribution and the
sensitivity of the weighting function (17). In company with
β, η determines the penalty weight during the update
process according to the degree how much a sample is
considered as an outlier.

Some suggestions have already been made about the

3487

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

selection of the learning rate α. [7],[15] stated that α(t)
should decrease to zero as t→∞ and satisfies certain
conditions, e.g.
 for some q>1, (27) () , ()q

t t
t tα α= ∞ < ∞∑ ∑

when computing principal components using GHA and
iterative robust PCA (5) respectively. Typically, it was
chosen as α(t)=1/t. In [16], it was also proven that the local
convergence of KHA followed from the local convergence
of GHA for learning rate 1/t, in ℜl.

β was recommended to start at a small value and
increase with a rate of O(lnt) and η change according to β
i.e. a small η for small β as the penalty weight was not
sensitive and a large η for a larger β. to restrain the true
samples to be considered as outliers [7].

In our experiments, we selected fixed values for α, β
and η for simplicity.

4. Simulation experiments

In this section, we have evaluated the robustness and
effectiveness of our Iterative Robust KPCA (IRKPCA)
algorithm compared to the standard KPCA. We conducted
experiments on the artificial data described in literature [2].
The data consisted of three clusters in two-dimensional
space. Each cluster had 100 samples fallowing Gaussian
distribution with standard deviation 0.1 and means [-0.5
-0.2], [0 0.6], [0.5 0] respectively. These 300 samples
constitute the true data set.

For the purpose of comparison, 10 outlying samples
were also generated randomly with a distribution different
from Gaussian, which constituted an outliers set.

In our experiments, polynomial kernel of degree 2 was
used. As discussed in section 3.2, three parameters should
be set properly: the learning rate α, Gibbs parameter β and
penalty threshold η. We fixed α=0.001, β=5 and η=3 for
simplicity.

Figure 1.Contour lines of constant value of the first four
PCs for the true data set obtained from KPCA.

Figure 2. Contour lines of constant value of the first four
PCs for the data set including outliers set obtained from
KPCA.

When without the presence of outliers, KPCA finds the
kernel principal components correctly. Figure 1 shows the
first four PCs of the true data set extracted by standard
KPCA. From left to right, the PCs are shown in the order of
decreasing eigenvalue size. The results illuminate the
advantage of using nonlinear kernel in the facet of
reflecting the data structure. The first two PCs separate the
three clusters nicely, and the PCs 3-4 split up the clusters
into halves.

When the data are spoiled by outliers, KPCA exposes
its instability. Figure 2 is the result of KPCA on the data
spoiled by 10 outliers (about 3%). The PCs obtained are
very different from the desired results and cannot split the
three clusters properly.

Figure 3. Results of the first four PCs obtained from
IRKPCA for dataset with (the top row) and without (bottom
row) the outliers

Our proposed method performs more accurately in this
situation. Figure 3 is the results of our IRKPCA. As figures
in the first row show, IRKPCA can restrain the effect of

3488

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

outliers effectively and the PCs obtained are very close to
the real ones, especially the first two components. It is also
equivalent to KPCA when no outliers are presented, just as
figures in the second row show.

Figure 4 is the comparative result of the eigenvalue
distributions obtained in figures 1-3. Obviously, the
proposed method outperforms KPCA method in the aspect
of robustness.

Figure 4. Comparative result of eigenvalue distributions
corresponding to figures 1-3

5. Conclusions and future work

In this paper, we have proposed a novel iterative
method to compute kernel principal components. This
method enhances the robustness against outliers in the data
by adding a weight term in the update rule. Experimental
results show that the proposed method is superior to the
standard KPCA in terms of robustness. By the virtue of
iterative computation, large memory is not required to
maintain the huge kernel matrix, which implies the
possibility of practical implements. Therefore, more
experiments should be carried out to examine the
computational efficiency. In addition, the incremental
version of our method is worthy of investigation.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China under grand number
60605005 and the Open Fund of National Laboratory of
Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences under grand number 2005-2.

References

[1] K. Fukunaga, Introduction to Statistical Pattern
Recognition: Academic Pr, 1990.

[2] B. Scholkopf, A. Smola, and K. R. Muller, "Nonlinear
component analysis as a kernel eigenvalue problem,"
Neural Computation, vol. 10, pp. 1299-1319, Jul 1
1998.

[3] S. Mika, B. Scholkopf, A. Smola, K. R. Muller, M.
Scholz, and G. Ratsch, "Kernel PCA and de-noising in
feature spaces." vol. 11, 1999, pp. 536-542.

[4] B. Mak, J. T. Kwok, and S. Ho, "Kernel eigenvoice
speaker adaptation," IEEE Transactions on Speech and
Audio Processing, vol. 13, pp. 984-992, Sep 2005.

[5] B. Y. Liu and J. Zhang, "Eigenspectra versus
eigenfaces: Classification with a kernel-based
nonlinear representor," Advances in Natural
Computation, Pt 1, Proceedings, vol. 3610, pp.
660-663, 2005.

[6] J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin,
"KPCA plus LDA: A complete kernel fisher
discriminant framework for feature extraction and
recognition," IEEE Transactions on PAMI, vol. 27, pp.
230-244, Feb 2005.

[7] L. Xu and A. L. Yuille, "Robust principal component
analysis by self-organizing rules based on statistical
physics approach," IEEE Transactions on Neural
Networks, vol. 6, pp. 131-143, 1995.

[8] C. D. Lu, T. Y. Zhang, X. Z. Du, and C. P. Li, "A
robust kernel PCA algorithm," in Proceedings of 2004
International Conference on Machine Learning and
Cybernetics, 2004, pp. 3084-3087.

[9] M. Brand, "Incremental singular value decomposition
of uncertain data with missing values," European
Conference on Computer Vision, pp. 707-720, 2002.

[10] F. De La Torre and M. J. Black, "A framework for
robust subspace learning," International Journal of
Computer Vision, vol. 54, pp. 117-142, 2003.

[11] Y. Li, "On incremental and robust subspace learning,"
Pattern Recognition, vol. 37, pp. 1509-1518, 2004.

[12] G. H. Golub and C. F. Van Loan, Matrix Computation:
The Johns Hopkins University Press Baltimore, 1996.

[13] K. I. Diamantaras and S. Y. Kung, Principal
component neural networks: theory and applications:
John Wiley & Sons, Inc. New York, NY, USA, 1996.

[14] P. J. Huber, "Robust Statistic," NewYork: Wiley,
1981.

[15] T. D. Sanger, "Optimal unsupervised learning in a
single-layer linear feedforward neural network,"
Neural Networks, vol. 2, pp. 459-473, 1989.

[16] K. Kwang In, M. O. Franz, and B. Scholkopf,
"Iterative Kernel Principal Component Analysis for
Image Modeling," PAMI, IEEE Transactions on, vol.
27, pp. 1351-1366, 2005.

3489

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

