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Abstract: 
Principal Component Analysis (PCA) has been proven to 

be an efficient method in dimensionality reduction, feature 
extraction and pattern recognition. Kernel Principal 
Component Analysis (KPCA) can be considered as a natural 
nonlinear generalization of PCA, which performs linear PCA 
in a high dimensional space implicitly by using kernel trick. 
However, both conventional PCA and KPCA suffer from the 
deficiency of being sensitive to outliers. Existing robust KPCA 
has to eigen-decompose the Gram matrix directly in each step 
and is much more computationally infeasible due to the large 
size of the matrix when the number of training samples is 
large. By extending existing robust PCA algorithm using 
kernel methods, we present a novel robust adaptive algorithm 
for calculating the kernel principal components. The proposed 
method not only preserves the characteristic of capturing 
underlying nonlinear structure of KPCA but also is robust 
against outliers by restraining the effect of outlying samples. 
Compared with existing robust KPCA methods, our method is 
performed without having to store the kernel matrix, which 
can reduce significantly the storage burden. In addition, our 
method shows the potential of expansibility to the incremental 
learning version. Experimental results on synthetic data  
indicate that our improved algorithm is effective and 
promising. 
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1. Introduction 

Principal Component Analysis (PCA) is an efficient 
method for dimensionality reduction, feature extraction, 
and has been widely used in many fields, such as image 
processing, statistical analysis and pattern recognition [1]. 
Conventional PCA is to find a linear orthogonal basis 
transformation by an eigen-decomposition of the centered 
covariance matrix of the data set. Dimensionality reduction 

and feature extraction are achieved by projecting input data 
into the subspace spanned by a set of principal eigenvectors 
corresponding to the largest eigenvalues. 

Linear PCA is suitable to describe data with Gaussian 
distribution, for it takes only second-order correlations into 
account. Kernel PCA (KPCA) can be considered as a 
natural nonlinear generalization of PCA, which can extract 
nonlinear structure from data set [2]. The basic idea of 
KPCA is to fist map the input data into some feature space 
via nonlinear map and then to execute linear PCA on the 
mapped data. It is generally computationally infeasible to 
execute PCA directly in the feature space due to the high 
dimensionality of the feature space. KPCA enables this by 
using kernel methods and formulating PCA as the 
equivalent kernel eigenvalue problem. On account of the 
attractive capability, KPCA based methods have been 
extensively investigated [3],[4],[5],[6], and have showed 
excellent performance. 

However, both the classical PCA and KPCA 
algorithms, implemented in the sense of least mean squared 
error minimization, have the deficiency of instability when 
input samples are spoiled by outliers, the usual situations in 
many practical problems. As [7],[8] have reported, even 
small amount of outliers will significantly deteriorate the 
performance of standard PCA and KPCA. Nevertheless, it 
is practically not easy to separate the outliers from the true 
data. A number of efforts have been made to tackle this 
problem, and existing representative algorithms to compute 
the principal components robust against outliers include 
[7],[9],[10],[11]. However, to the best of our knowledge, 
the existing robust algorithms for kernel principal 
components are very limited except [8].  

In [8], Lu et al. proposed a robust KPCA, which had to 
iteratively eigen-decompose the kernel matrix. The method 
recognizes the outliers by setting a global threshold of 
reconstruction error of the training samples and then 
eliminating the samples exceeding the threshold. Instead of 
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giving an ascertain threshold, a percentage outliers take of 
the training samples is assumed, such as 2%-5%. One 
limitation of this method is that it is usually 
computationally intensive. Because the size of kernel 
matrix is the square of the number of training samples 
which is generally very large in real situations, it becomes 
much infeasible to maintain a large memory to store the 
huge matrix and expend high computation to 
eigen-decompose the matrix in each step. In addition, this 
method recognizes the outliers in an explicit way, i.e. each 
training sample is considered to be either a true data or an 
outlier, which is not reasonable.  

Among the methods for robust PCA [7],[9],[10],[11], 
we focus on Xu et al.’s method [7]. In [7], the energy 
function for original PCA is first generalized by adding a 
binary decision field so that outliers are dealt with explicitly 
in order to enhance the robustness. Then a Gibbs 
distribution is defined using the generalized energy function, 
and the marginal distribution is also obtained which defined 
an effective energy function. In this way, the question is 
translated into the maximization of the marginal 
distribution, and a self-organizing rule for robust PCA is 
developed finally,  

In this paper, a novel Iterative Robust KPCA (IRKPCA) 
is presented based on the research of Xu et al. [7] by 
kernellizing the adaptive rule of computing principal 
components. The resulting method enhances the robustness 
by restraining the effect of outliers efficiently. This is 
achieved by adding a weight term in the update rule which 
considers the outliers implicitly and smoothly. Furthermore, 
the proposed algorithm has three accessional merits: first, 
by the virtue of iterative computation, no large memory and 
direct eigen-decomposition are required to deal with the 
huge kernel matrix; second, it preserves the nonlinearity 
property of KPCA; third, it shows the potential of 
expansibility to incremental version. 

The rest of this paper is organized as follows. Section 
2 introduces briefly the original PCA, Xu et al.’s robust 
PCA and the standard KPCA. Section 3 formulates our 
Iterative Robust Kernel PCA algorithm. In Section 4, 
experimental results on synthetic data are presented. Finally, 
conclusions are given in Section 5.  

2. Previous work 

2.1. Principal component analysis 

Given a data set with l samples xi∈ℜn and zero 

mean , i=1,...,l, classical PCA is to solve 

the following optimization problem: 
1

(1/ ) 0l
ii

l x
=

=∑

2

1
( ) (1/ ) || ||l

i ii
J w l x u

=
= ∑ −

−

        (1) 

where u=wy and y=wTx. This is equivalent to solve the 
eigenvalue problem  
  (2) w Cwλ =
for eigenvalues λ≥0 and eigenvectors w∈ℜn\0. C is the 

covariance matrix . 
1

(1/ ) l T
i ii

C l x x
=

= ∑
While efficient and reliable numerical methods are 

discussed representatively in [12], adaptive approaches to 
PCA analysis are discussed e.g. in [1],[13]. From the 
computational point of view, it can be more advantageous 
to solve the eigenvalue problem (2) by iterative or adaptive 
methods which do not need to store and calculate the matrix 
C directly. This is particularly useful when the matrix size 
is large. Another drawback of PCA is that it is sensitive to 
outliers. In contrast to PCA, robust PCA is robust against 
outliers. 

2.2. Robust PCA 

Robust PCA has been studied for many years, and 
many algorithms have been presented [7],[9],[10],[11]. In 
this paper, we fix our attention on the method of Xu et al. 
[7]. We review it here briefly. 

To consider the effect of outliers, [7] generalizes the 
energy function defined in (1) to the following formula by 
adding a penalty item, which indicates the energy portion 
contributed by outliers: 

1 1
( , ) ( , ) (1 )l l

i i ii i
E w V z x w Vη

= =
= +∑ ∑V    (3) 

where , V is a binary field with 
V

2( , ) || ||i iz x w x u= − i

i∈0,1, i=1,...,l, and η is a scalar threshold.  
In (3), z(xi,w) is the energy portion contributed by xi. Vi 

can be considered as a decision indicator for deciding 
whether xi is a normal sample or an outlier. When z(xi,w)< η, 
Vi should be set to 1 as it is more reasonable to consider xi 
as a true sample and set to 0 otherwise. 

It is not easy to minimize E(V,w) with respect to V and 
w simultaneously because it is a mixture of discrete and 
continuous optimization. This is then achieved by defining 
a Gibbs distribution ( , )( ) (1/ ) E wP ,w Z e β−= VV and then 
maximizing the marginal probability distribution 

eff ( )
margin ( ) /( )E w NP w e Zeβ βη−=  by averaging each Vi. Finally, 

the problem is equivalent to maximize the generalized 
energy function 

[ ( , ) ]
eff

1( ) log{1 }iz x w

i
E w e β η

β
− −= − +∑     (4) 
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Eeff(w) can be regarded as a generalization of a robust 
redescending M-estimators [14] to the PCA problem. In (4) 
each item in the summation is close to z(xi,w) if it has a 
small value, but becomes constant as z(xi,w)→∞. In this 
way, outliers which are more likely to yield large z(xi,w) are 
restrained effectively while the true samples yielding small 
z(xi,w) are affected very slightly. 

The robust adaptive rules to compute first k principal 
components are 

( ( ( )), ( ) )

2

1( 1) ( ) ( )
1

       ( ( ) ( ) ( ) ( ) )

j jj j z x t w t

j
j j j

w t w t t
e

x t y t w t y t

β ηα −+ = + ⋅
+

⋅ −
 (5)  

1( ) ( )x t x t=                    (6) 

( ) ( ) ( ) ( )j
r r

r j

x t x t w t y t
<

= −∑ ,j=2,…,k        (7) 

( ) ( ) ( )T j
j jy t w t x t=               (8) 

where x(t) is the sample selected randomly from l input 
examples at time t. xj(t), which is obtained by removing 
first j-1 reconstruction images, is the residual portion of 
input x(t) to compute the jth vector wj(t), α(t) is the learning 
rate, β is the Gibbs parameter and η is the penalty threshold 
defined in (3). Formally, the update rules (5)-(8) can be 
considered as the generalization of the unrobust k-PCA rule 
GHA [15]. 

2.3. Kernel PCA 

As stated in section 1, linear PCA fails to represent the 
underlying nonlinear structure of data, for it takes only 
second-order correlations into account. As a natural 
nonlinear extension of PCA, Kernel PCA (i.e. KPCA) 
computes the principal components in a possibly 
high-dimensional feature space H  which is mapped from 
the input data space by a nonlinear map: 

:      
           ( )

n

x x
Φ ℜ →

Φ
H

 
 

The feature space H is also called Reproducing Kernel 
Hilbert Space (RKHS). 

Since the dimensionality of the feature space H may 
be very high (possibly infinite), it is infeasible to carry out 
the PCA analysis directly. Kernel techniques are then 
introduced to avoid this difficulty, which enable us to 
compute the inner product without having to evaluate the 
map explicitly. 

Without loss of generality, we assume that samples are 

centered in the feature space, i.e. . Then 

the covariance matrix of the mapped samples becomes 
1

( ) 0l
ii

Φ x
=

=∑

1 TC
l

= ΦΦ                   (9) 

where Φ=[Φ(x1),...,Φ(xl)]. We now have to find the 
eigenvalues λ ≥ 0 and eigenvectors w∈H \ 0 satisfying   

w wλ = C                   (10) 
It is easy to know that each eigenvector w with λ ≥ 0 lies in 
the space spanned by the training samples Φ(x1),...,Φ(xl), 
therefore, w can be linearly expended by  

1
( )

l
i

i
i

w aΦ x
=

=∑                (11) 

Substituting (9) and (11) into (10), and denoting the Gram 
matrix as K=ΦΦT, we obtain lλKa=K2a. This leads to the 
following equivalent kernel eigenvalue problem   

l a aλ = K                     (12) 
The above derivation assumes that all projected 

samples Φ(x) are centered in H. When this is not true, the 
Gram matrix K should be replaced by  

ˆ
l l l= − − +K K 1 K K1 1 K1l

1

)⋅

)

        (13) 
where 1l = (1/l)l×l. 

Let λ1 ≥ λ2 ≥...≥ λl denote the eigenvalues of K in (12), 
and a1,a2,…,al the corresponding complete set of 
eigenvectors, with λk being the last nonzero eigenvalue. We 
normalize a1,a2,…,al by requiring that the corresponding 
vectors in H be normalized, that is  

( )j jw w⋅ = , for all j=1,...,k 
By virtue of equations (11) and (12), this becomes to  

, 1

, 1

1 ( ( ) ( ))
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l
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=

=
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∑

∑ K K
  (14) 

Now, we can extract the nonlinear principal components of 
the test sample x: 

1 1
( ( )) ( ( ) ( )) ( ,

l l

i i i i
i i

w Φ x a Φ x Φ x a k x x
= =

⋅ = ⋅ =∑ ∑  (15) 

which is achieved by using kernel function without the 
expensive operation that explicitly projects samples to the 
feature space H. 

There are great choices of kernel functions, and the best 
selection of kernel remains an open topic. Presently, 
polynomial kernel, radial basis function kernel and sigmoid 
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kernel are widely used. 

3. Proposed method for Robust KPCA  

3.1. Derivation of Iterative Robust Kernel PCA 

Although KPCA has been used in several applications 
successfully and showed better performance than PCA, it 
suffers from the sensitivity to outliers in the same way. In 
this section, we present a novel robust method which is able 
to compute kernel principal components. 

Firstly, we rewrite the update rule (5) of Xu et al.’s 
method for robust PCA to the matrix form: 

( 1) ( )
( )( ( )) ( ) UT[ ( ) ( ) ] ( )) ( )T T

t t
t x t y t y t y t t tα
+ =

+ −
W W

W Ζ
 (16) 

where W(t) is a n×k matrix, with the jth column being the 
eigenvector corresponding to the jth largest eigenvalue 
when the iteration converges, y(t)=W(t)Tx(t), UT(•) sets all 
elements below the diagonal of is matrix argument to zero, 
thus making it upper triangular and Z(t) is a diagonal 
matrix. For notational convenience, we denote the function  

 ( )

1( )
1 zf z

eβ η−=
+

 (17) 

Consequently, the jth value on the diagonal of Z(t) can be 
expressed as f(z(xj,wj)). z(xj,wj) and xj orginate from (3) and 
(7) respectively. 
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Update rule (16) can be represented in the feature 
space H as 

 
( 1) ( ) ( )

  ( ( ( )) ( ) UT[ ( ) ( ) ] ( )) ( )T T

t t t
Φ x t y t y t y t t t

α+ = +
−

W W
W Ζ

 (19) 

where the input is the mapped data Φ(x(t)), the columns of 
W(t) are vectors in H and y(t)=W(t)TΦ(x(t)). 

From the derivation of KPCA, it is known that w(t) 
can be expanded in the projected samples Φ(xi), as a result, 

  (20) ( ) ( )t =W ΦA t
where A(t)=[a1(t),a2(t),...,al(t)] is the expansion coefficients 
matrix with the size of l×k. Using this representation, the 
update rule becomes  

( 1) ( ) ( )
( ( ( )) ( ) UT[ ( ) ( ) ] ( )) ( )T T

t t t
Φ x t y t y t y t t t

α+ = +
−

ΦA ΦA
ΦA Ζ

 (21) 

The mapped pattern Φ(x(t)) can also be represented as 
Φ(x(t))=Φb(t), where b(t)=[0,0,...,1,...,0]T  is a vector in ℜl 
with only the ith element is 1 when xi in input data set is 

selected as x(t) at time t. In this way, the rule can be 
rewritten solely in terms of the expansion coefficients as:  
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In the same way, the kernel matrix K should be 
preprocessed according to (13) such that the data are 
centered in space H.  

The rules presented above provide a practical 
implementation of the robust PCA discussed in section 2.2. 
in space H. Furthermore, it could be regarded as a robust 
extension of the Kernel Hebbian Algorithm (KHA) [16], 
which calculates kernel principal components iteratively. 
During the implementation, A should be randomly 
initialized and the update will converge if parameters α, β 
and η are selected properly. For the details of the 
convergence of KHA, refer to [16]. 

3.2. Parameters selection 

There are three parameters in our procedure, the 
learning rate α, the Gibbs parameter β and the scalar penalty 
threshold η, which need to be selected reasonably. The 
larger learning rate α is, the faster the learning and the 
bigger the fluctuation in the learning process. The inverse 
of β decides the sharpness of the Gibbs distribution and the 
sensitivity of the weighting function (17). In company with 
β, η determines the penalty weight during the update 
process according to the degree how much a sample is 
considered as an outlier. 

Some suggestions have already been made about the 
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selection of the learning rate α. [7],[15] stated that α(t) 
should decrease to zero as t→∞ and satisfies certain 
conditions, e.g.  
  for some q>1, (27) ( ) ,  ( )q

t t
t tα α= ∞ < ∞∑ ∑

when computing principal components using GHA and 
iterative robust PCA (5) respectively. Typically, it was 
chosen as α(t)=1/t. In [16], it was also proven that the local 
convergence of KHA followed from the local convergence 
of GHA for learning rate 1/t, in ℜl. 

β was recommended to start at a small value and 
increase with a rate of O(lnt) and η change according to β 
i.e. a small η for small β as the penalty weight was not 
sensitive and a large η for a larger β. to restrain the true 
samples to be considered as outliers [7]. 

In our experiments, we selected fixed values for α, β 
and η for simplicity. 

4. Simulation experiments 

In this section, we have evaluated the robustness and 
effectiveness of our Iterative Robust KPCA (IRKPCA) 
algorithm compared to the standard KPCA. We conducted 
experiments on the artificial data described in literature [2]. 
The data consisted of three clusters in two-dimensional 
space. Each cluster had 100 samples fallowing Gaussian 
distribution with standard deviation 0.1 and means [-0.5 
-0.2], [0 0.6], [0.5 0] respectively. These 300 samples 
constitute the true data set.  

For the purpose of comparison, 10 outlying samples 
were also generated randomly with a distribution different 
from Gaussian, which constituted an outliers set. 

In our experiments, polynomial kernel of degree 2 was 
used. As discussed in section 3.2, three parameters should 
be set properly: the learning rate α, Gibbs parameter β and 
penalty threshold η. We fixed α=0.001, β=5 and η=3 for 
simplicity. 

 
Figure 1.Contour lines of constant value of the first four 
PCs for the true data set obtained from KPCA. 

 
 
 

 
 

Figure 2. Contour lines of constant value of the first four
PCs for the data set including outliers set obtained from
KPCA. 

When without the presence of outliers, KPCA finds the 
kernel principal components correctly. Figure 1 shows the 
first four PCs of the true data set extracted by standard 
KPCA. From left to right, the PCs are shown in the order of 
decreasing eigenvalue size. The results illuminate the 
advantage of using nonlinear kernel in the facet of 
reflecting the data structure. The first two PCs separate the 
three clusters nicely, and the PCs 3-4 split up the clusters 
into halves.  

When the data are spoiled by outliers, KPCA exposes 
its instability. Figure 2 is the result of KPCA on the data 
spoiled by 10 outliers (about 3%). The PCs obtained are 
very different from the desired results and cannot split the 
three clusters properly.  

 

 
Figure 3. Results of the first four PCs obtained from 
IRKPCA for dataset with (the top row) and without (bottom 
row) the outliers 

Our proposed method performs more accurately in this 
situation. Figure 3 is the results of our IRKPCA. As figures 
in the first row show, IRKPCA can restrain the effect of 
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outliers effectively and the PCs obtained are very close to 
the real ones, especially the first two components. It is also 
equivalent to KPCA when no outliers are presented, just as 
figures in the second row show.  

Figure 4 is the comparative result of the eigenvalue 
distributions obtained in figures 1-3. Obviously, the 
proposed method outperforms KPCA method in the aspect 
of robustness. 

 
Figure 4. Comparative result of eigenvalue distributions 
corresponding to figures 1-3 

5. Conclusions and future work 

In this paper, we have proposed a novel iterative 
method to compute kernel principal components. This 
method enhances the robustness against outliers in the data 
by adding a weight term in the update rule. Experimental 
results show that the proposed method is superior to the 
standard KPCA in terms of robustness. By the virtue of 
iterative computation, large memory is not required to 
maintain the huge kernel matrix, which implies the 
possibility of practical implements. Therefore, more 
experiments should be carried out to examine the 
computational efficiency. In addition, the incremental 
version of our method is worthy of investigation. 
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