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Abstract. Gait can be easily acquired at a distance, so it has become a popular
biometric especially in intelligent visual surveillance. In gait-based humam-id
tification there are many factors that may degrade the performanteoése on
human contours is a significant one because to extract contourstpeise hard
problem especially in a complex background. The contours extraceuviideo
sequences are often polluted by noise. To improve the performaeceave to
reduce the effect of noise. Different from the methods which usamotime
warping (DTW) in previous work to match sequences in the time domain\&-DT
based contour similarity measure in the spatial domain is proposed tcertitkic
effect of noise. The experiments on a large gait database show éduotivfhess
of the proposed method.

1 Introduction

Gait has recently received an increasing interest fromarekers. Gait is an attrac-
tive biometric feature for human identification at a diseubecause it is non-contact,
non-invasive and can be easily acquired at a distance imaintith other biometrics.
Now gait has been considered as a suitable biometric for hudestification in visual
surveillance.

Many gait recognition methods have been developed in rgeEnts, and most of
them can be explicitly classified into two main categoriesdei-based approaches and
appearance-based approaches. Model-based approacBpegdterally aim to recover
gait features, such as stride dimensions, limb lengths arehatics of joint angles, by
model matching in each frame of a walking sequence. Appearbased approaches
[4,5] usually use the silhouettes as a whole to analyze dimé&matures of motion
bodies, so these methods are efficient and simple, and mesistihg gait recognition
approaches belong to this category.

The human contour, outline of the sihouette, is popular [$-&ppearance-based
gait recognition. A contour is more compact than its coroesiing silhouette because
only the points on the shape outline are considered. Thecgiming of contours is that
they are more sensitive to noise than silhouettes. Dynaimie warping (DTW) is a
common technique for matching time-varying signals. It hasn used for matching
sequences in the time domain [9-12]. We use DTW in the spatialain and pro-
posed two contour similarity measures to make contourebgsé recognition algo-
rithms robust to noise. Experiments were carried out ongelgait database, CASIA



Gait Database (Dataset B) [13], which contains 124 subjé@tts experimental results
show that the proposed method can greatly improve the pesgioce.

The remainder of this paper is organized as follows. SeQidmiefly introduces
the contour extraction and representation, and Sectiors&rithes the effect of noise
on contours. The proposed similarity measures are prasang&ection 4. Experiments
and results are shown in Section 5. Section 6 concludes tier.pa

2 Human Contour Extraction

If video sequences are captured by fixed cameras, humamnsttes can be extracted
by background subtraction and thresholding. A human contauline of a body, can

be easily obtained from a human silhouette by a border fafigvalgorithm based on

connectivity. The contour can be further viewed as beingéxcomplex plane [7]. Each
point on the contour can be represented by a complex number:

whereN is the number of points on the contour. An equal number oftg@re used to
express each contour. And each contour are countercloelwigrapped from the top
point of the contour to turn it into a complex vector:

S:[p17p25"'apN]T (2)

Here, walking direction is normalized based on gait symynietthe side view.

Suppose a video sequence contaihgait cycles, then the sequence can be divided
into C' short sequences using the method mentioned in [14] and esclantains a
gait cycle. To reduce the influence of the walking speed,aostin a gait cycle are
interpolated to the same numbEr TheC gait cycles in a video sequenSere shown
as follows:

Sl :[31’ 82’ ...,ST ]
Sy = [s741, ST+2, o, Sor ] 3)
Sc = [s(c—1)1+1, S(c=1)T+2, "> SCT ]

wheres; is a contour as illustrated in Equation 2, afd is a N x T matrix which
represent a gait cycle.

Fig. 1. Stances from a gait cycle



The frames in a gait cycle are aligned to make the stance hétlgteatest width be
the first frame of the cycle. Some stances from a gait cyclslzmen in Fig. 1.

3 The Effect of Noise on Contours

To segment the human body is a hard problem especially in glexnackground.

The extracted silhouettes and contours may be affected tsg.nBig. 2.(a) shows a
silhouette with noise where a portion is lost, and Fig. 2gws the corresponding
ground-true silhouette. The following formula is used toas@e the difference be-
tween a feature and its corresponding ground-truth feature
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wheref is the feature vector anf], is the ground-truth feature vector. Thevalue
between the two silhouettes (Fig.2(a) and (b)) is 1.8%. fesns that 1.8% of the
human silhouette area is different.

i

(a) A silhouette with (b) The ground-truth (c) The contour ex- (d) The ground-truth
noise silhouette tracted from (a) contour

Fig. 2. Silhouette with noise and the ground-truth one

Fig. 2(c) and (d) are the contours extracted from Fig. 2(d)(ai), respectively. We
use the formula in Equation 2 to represent contours. Thereiffce ratiop, between
the two contours is 7.6%, and it is over 4 times greater thap tralue of silhouettes. It
means that noise has a greater effect on contours than ausites. This is consistent
with one’s intuition.

To improve contour-based methods, one solution is to ingiuyman detection
and segmentation algorithms. But it is not easy to segmenghibody perfectly from
background especially in a complex outdoor scene. Anotbletien is to improve the
similarity measure for contours. In the following sectiare propose two DTW-based
contour similarity measures.



4 Algorithm Overview

To improve the robustness of contour to noise, one straigh#frd idea is to match
contours first before computing the similarity. If each of thody components, such
as head, hands and feet, can be correctly matched betwedmman body contours,
the effect of noise should be greatly reduced. Dynamic tinagpimg is used in our
proposed method to match two contours.

4.1 Dynamic Time Warping

Dynamic time warping (DTW) [15] is an algorithm for measuritige similarity be-
tween two series, which may vary in time or speed, and haswikaty used in speech
processing, gesture recognition [16], etc. DTW can find amwd match between two
given series”? and@. Suppose the length df and@Q aren andm, respectively:

P = [p17p27"'7pm}T (5)

Q: [Q17q2a"'7qn]T (6)

To find the best alignment of the two series,ank n matrix D, namely a cost matrix,
is created. The elemedfs, j) of the matrixD is the distance between andg;:

d(i, j) = dist(pi, q;) @)

wheredist can be the Euclidean distance or other kinds of distancesulrexperi-
ments, the Euclidean distance was used.
A warp pathi¥ can be constructed as shown in Fig. 3 and expressed in the/fod
way:
W = [wi,ws, -, wg] max(m,n) <K <m+n (8)

whereK is the length of the warp path, and th& element ofiV’, wy,, is (i, j) which
means theé'" element ofP corresponds with thg¢'" one ofQ.

To ensure every element of the two series to be used in the pattp the warp
path must start at the beginning of each series,at= (1, 1) and finish at the end of
both series atvx = (m, n). Another constraint on the warp path is the two neighbor
steps must be adjacent cells (including diagonally adjacelts). Givenw;, = (i, j),
wit+1 = (¢, 7) must satisfyi’ —¢ < landj’ —j < 1.

The optimal warp path is the minimum-distance one, wheraistance of a warp
path is

K K
L= Zd(%jk) = Z d(wy,) 9)
1 k=1

andwy, = (iy, jx) is thek*" matched pair of the two series. This optimal path can be
found very efficiently using dynamic programming [17].
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Fig. 3. An example of dynamic time warping

4.2 Contour Similarity Measures

Since an optimal match can be found through DTW, using theageepath distance of
L to measure the similarity between two contours is a matt@oafse. The average
distance between two contouFsandq is

K
- 1
L(P, = — d(wy, 10
(P.Q) =% ,; () (10)
whereW = [wy,ws, - -, wk] is the optimal match between the contofrand@.

The contours can be affected by noise and have some dist®rj9, ¢4 and g5
on the contour® in Fig. 4). When this occurs, a point on a contour will be aldne
to multiple points. That isp; on the contourP will be aligned togs, ¢4 andgs on
the contourQ, andws, wy andws have a common points. To reduce the effect of
noise, only the pair with the shortest distanag)(is kept and others pairs which have
a common point are discarded in calculation of the contauilaiity. So the distance
between the contour® and( can also be defined as

L(P.Q) = 7 3 dlux) (12)
keK
whereK" is the number of elements I, K is a subset of 1, 2, - - -, K'}, and the pairs
with a common point are removed and only the one with the skbdistance is kept.
Now we have two similarity measures: the traditional DTWrage distancé. and
the improved DTW average distante

4.3 Video Sequence Similarity Measures

Suppose that there are two gait sequeng&sand S*, with sequenceS from the
gallery set (the training set), and sequeit’e from the probe set (the test set). The
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Fig. 4. The match between two contours

two sequences can be divided ino several gait cycles asrdted in Equation 3. The
(12)

distance between the two sequences is
SeqDist(S¢, ST) = min(CycleDist(S¢, Sf))
i,]
1€ {172a"'aCG}7j € {1727"'70P}

whereS{ is theit” gait cycle in the sequencg”, andS} is the;j*" gait cycle in the
(13)

sequences”’. The distance between these two gait cycles can be:
1 T
CycleDist(S{,8F) = 7 Z L(s%,sP)
t=1
(14)

1
> L(s¢.sf)
t=1

wheres¢ is thet'" contour in the gait cycl&s?, ands? is thet' contour in the gait

N

or
CycleDist(SY, Sf) =

cycleS; .

5 Experimental Results
The proposed method was tested on CASIA Gait Database @d&ngL3] which con-

tains 124 subjects (93 males and 31 females) captured frovreds. One experiment
was carried out for each view. There are six sequences for @#gject at each view.

The first four sequences were put into the gallery set, anthghéwo were put into the
probe set as in [13]. Each sequence in the probe set was cednpith all sequences
in the gallery set using the DTW distance in Equation 12. #esihe DTW distance,
the Euclidean distance was also involved for performanospemison.



Because the focus here is the contour similarity measuriep@lesand most com-
monly used classifier, nearest neighbor classifier, was usd#te experiments. The
correct classification rates (CCRs) are listed in Table 1 cdfefind from Table 1 that
the DTW-based measures greatly improve the recognitienafagait recognition. The
improve DTW-based measur, which achieves the highest CCR. The average CCR
by the Euclidean distance is only 67.7%. The KFD method ifj fitained better re-
sults than the Euclidean distance, but the average CCRti2j6% higher than that
by the Euclidean distance. The improvement by the KFD methodt as great as the
DTW-based methods achieved.

Table 1. CCRs by different methods(%)

Method 0° |18°|36°|54°|72°(90°|108°|126°|144°|162°|180°||Average

Improved DTW(LL)||93.584.7/85.980.283.983.5 73.0| 80.6| 89.9| 90.7| 92.7|| 85.3
Trad. DTW(L) |[91.181.983.179.481.081.0 70.6| 80.6| 88.7| 86.7| 90.3|| 83.1
Euclidean Dist. |60.551.263.367.372.271.4 63.3| 72.6| 79.0| 77.8| 66.1|| 67.7

KFD in [18] 71.849.272.669.477.875.0 69.8| 71.4| 71.0| 77.8| 67.7|| 70.3

Cumulative match scores (CMS) are also used to evaluatesttfiermance of pro-
posed methods. The match scores in Fig. 5 are the averagh staties of 11 views
from rank 1 to 10. From Fig. 5, we can draw similar conclusitmthat from Table 1.
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Fig. 5. Cumulative Average match scores of three different measures



Although the DTW-based contour similarity measures arepkinmethods, they
greatly improve the robustness to noise. The experimest®der their potential in gait
recognition and show contour matching is effective in rédgithe impact of noise.

6 Conclusonsand Future Work

We have presented two novel contour similarity measuregditrecognition. DTW is
used to match the points on two contours before computirig shmilarity. The simi-
larity between two contours is computed based on their gdtmatch. Experiments on
a large gait database show that the DTW-based measurespangosdio direct contour
comparison and even some other feature extraction metiditimugh the proposed
method is simple and straightforward, it indicates a pplecthat contour matching can
reduce the effect of noise.

In future we will design more sophisticated similarity mei@s to make the al-
gorithm more robust to noise and even some other variat®ose other advanced
classifiers, such as SVM and AdaBoost, will also be invetgidja
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