
Human Activity Recognition Based on � Transform

Ying Wang Kaiqi Huang Tieniu Tan
National Laboratory of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing, P.R.China
{wangying, kqhuang, tnt}@nlpr.ia.ac.cn

Abstract

This paper addresses human activity recognition based
on a new feature descriptor. For a binary human silhouette,
an extended radon transform, � transform, is employed to
represent low-level features. The advantage of the � trans-
form lies in its low computational complexity and geomet-
ric invariance. Then a set of HMMs based on the extracted
features are trained to recognize activities. Compared with
other commonly-used feature descriptors, � transform is
robust to frame loss in video, disjoint silhouettes and holes
in the shape, and thus achieves better performance in rec-
ognizing similar activities. Rich experiments have proved
the efficiency of the proposed method.

1. Introduction

Recognizing human activities from videos is a hot topic
of research in computer vision [1, 2], which has a wide
range of applications such as intelligent surveillance, anal-
ysis of the physical condition of people and caring of aged
people [3, 4, 5]. In general, human behavior analysis in-
cludes moving object tracking, low-level dynamic informa-
tion extraction and representation, activity model learning
and high-level semantic understanding.

Shape-based features are commonly used in activity
recognition because they can be extracted robustly from
videos, and they are robust to appearance variations such
as color and texture. Two types of shape-based features are
used, i.e. silhouette and contour. The silhouette method
takes into account all the pixels within a shape, and the con-
tour method only extracts the boundary of a shape. Fea-
ture description is a key bridge between low level image
feature and high level activity understanding [6, 7]. Gen-
eral contour-based descriptors include wavelets, Fourier de-
scriptors and Hough transform [8, 9, 10]. Since contour
descriptors are based on the boundary of a shape, they
cannot capture the internal structure information. Con-
sequently, they are limited to certain applications. Com-
mon silhouette-based shape descriptors include invariant

moment, Zernike moment and wavelet moment[11, 12, 13].
The moments are computationally intensive and sensitive
for disjoint shapes or shapes with noise where the silhou-
ette information is not correct. In surveillance, shapes with
noise are common because of complex background, and the
size of moving object varies with its distance to camera.
Therefore we need features invariant to geometry transfor-
mation and robust to noise, which is in accordance with the
performance of � transform [14].

� transform, a new feature representation, has low com-
putational cost and is effective to recognize similar activity
even in the case of disjoint silhouette, silhouette with holes
or frame loss data. Moreover, rich experiments prove that it
outperforms common shape descriptors in activity sequence
recognition.

In this paper, activity models based on features extracted
by � transform are trained by a standard learning tool,
HMM. The overall system architecture is illustrated in Fig-
ure 1.

Figure 1. The flowchart of activity recognition based on � Trans-
form.

This paper is organized as follows. Basic theory of �
transform is introduced in Section 2. Section 3 demon-
strates the effectiveness of the proposed method by com-

1-4244-1180-7/07/$25.00 ©2007 IEEE



parison with other feature descriptors. Finally Section 4 are
conclusions and future research directions.

2. Low level feature extraction

2.1. Radon transform

In mathematics, two dimensional Radon transform is the
transform consisting of the integral of a function over the
set of lines in all directions, which is roughly equivalent
to finding the projection of a shape on any given line. For
a discrete binary image, each image point is projected to a
Radon matrix. Let f(x, y) be an image, its Radon transform
is defined by [15]:

TRf (ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ+y sin θ−ρ)dxdy

= Radon{f(x, y)} (1)

where θ ∈ [0, π], ρ ∈ [−∞,∞] and δ(.) is the Dirac delta-
function,

δ(x) =
{

1 if x = 0
0 otherwise

(2)

For geometry transformation such as scaling, translation
and rotation, Radon transform has the following properties:

For a scaling factor α,

Radon{f(
x

α
,
y

α
)} =

1
α

TRf (αρ, θ) [scaling](3)

For translation of vector −→µ = (x0, y0),

Radon{f(x−x0, y−y0)} = TRf (ρ−x0 cos θ−y0 sin θ, θ)
[translation](4)

For rotation of θ0

Radon{fθ0(x, y)} = TRf (ρ, θ + θ0) [rotation](5)

From equations (3)-(5), one can see that Radon trans-
form is sensitive to scaling, translation and rotation. Some
adaptations are proposed to solve these problems.

2.2. � Transform

An improved representation of Radon transform, �
Transform, is introduced [14]:

�f (θ) =
∫ ∞

−∞
T 2

Rf (ρ, θ)dρ (6)

� transform has several useful properties. Some of them are
relevant to shape representation [14]:

For a scaling factor α,

1
α2

∫ ∞

−∞
T 2

Rf (αρ, θ)dρ =
1
α3

∫ ∞

−∞
T 2

Rf (ν, θ)dν =
1
α3

�f (θ)

[scaling](7)

For translation of vector −→µ = (x0, y0),∫ ∞

−∞
T 2

Rf ((ρ − x0 cos(θ) − y0 sin(θ)), θ)dρ

=
∫ ∞

−∞
T 2

Rf (ν, θ)dν = �f (θ) [translation](8)

For rotation of θ0∫ ∞

−∞
T 2

Rf (ρ, (θ + θ0))dρ = �f (θ + θ0) [rotation](9)
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Figure 2. �-transforms of the same human rushing silhouette
which has been scaled, translated and rotated by 30◦.

Figure 2 shows the � transform of the same object after
geometry transformation.

1. Translation in the plane does not change the � trans-
form.



2. A rotation of θ0 in the original image leads to the
phase shift of θ0 in � transform. This rarely happens in hu-
man activities.

3. Scaling the original image would not change the shape
of the � transform, but the amplitude would change accord-
ingly.

Therefore, � transform is invariant under translation and
scaling if we resize the image into a normalized scale, which
is feasible in activity recognition. Compared with Radon
transform, � transform is robust to geometry transforma-
tion as shown in Table 1. For each frame in the video, a
180-dimensional feature vector, instead of the 2D Radon
matrix, is extracted to represent the motion of the human
body. The information that the initial silhouette sequences
carry is transformed in a more compact way and invariant
to geometry transformation.

Table 1. The difference between Radon transform and � trans-
form.

Radon Transform � Transform
Scaling α A scaling of both

ρ and the trans-
form amplitude.

Only an ampli-
tude scaling of
the � transform

Translation
x0, y0

A shift of its
transform in ρ

Invariant

Rotation θ0 A shift of the
transform in θ0

A shift of the
transform in θ0

3. Experimental analysis

3.1. � transform of different activities

Our recognition system uses a stationary camera which
works in an office environment. The experiments are based
on 150 low resolution video sequences (320×240, 25fps)
of thirty different people, each performing five natural ac-
tivities including rushing, carrying a bag, suddenly bending
down when walking , walking normally and jumping. One
hundred of them are used in learning while the others used
for recognition.

All of these videos begin with the moving object en-
tering the monitor domain and end in leaving the camera
view. The median background of each video sequence is
subtracted and noise is removed with a median filter by a
3× 3 template. A predetermined threshold is used to obtain
the binary images. Figure 3 shows some examples of ex-
tracted silhouettes and contours for each activity sequences.
In experiments, we normalize moving direction based on
body symmetry in order to remove the influence of rotation
as shown in the fourth part of Figure 3.

Figure 4 shows the key frame silhouettes of different ac-
tivities, and their respective � transform. The figures in the
second column shows the difference of each activity. More-
over, the difference will keep for several continuous frames

Figure 3. Examples of video sequences and extracted silhouettes
and contours.

in the activity sequence, as shown in the last column in Fig-
ure 4. This figure illustrates that � transform could repre-
sent the characteristics of different activities:

1. Compared with other activities, the � transform curve
of carrying a bag fluctuates in the range from 140◦ to 170◦.
Obviously, this is caused by the bag.

2. The shape representation of bending down varies
slightly. And also, it has a peak close to 160◦.

3. Rushing, walking and jumping activities have similar
shape transform representations. Both rushing and jumping
have fluctuations while walking is smooth. This is caused
by the motion of limbs. There is intense movement in rush-
ing, so it has two peaks while jumping has one peak and
walking in general has no peak. However, the amplitude of
rushing is always higher than that of walking.

This figure shows that � transform can describe the spa-
tial information sufficiently and characterize the different
activity shape effectively.
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Figure 4. � transform of single frame and key frames for different
activities.

3.2. Experimental data

The resultant silhouettes contain holes and intrusions
due to imperfect subtraction, shadows and color similarities
with the background. To train the activity models, holes,
shadows and other noise are removed manually. The fine-
tuned data are taken as ground truth data.

The raw data include such cases as disjoint silhouettes,
silhouettes with holes and silhouettes with missing parts.
Compared with the ground truth data, they are incomplete
data.

Shadow and other noises may add an extra part to the
human silhouette, and thus result in redundant data.

The incomplete data and redundant data are of low qual-
ity, and thus they are used for testing the performance of the
� transform. Figure 5 shows some such examples.

Figure 5. Examples of noisy data in the dataset.

In order to test the robustness of � transform , we re-
move the first 10 frames, the middle 15 frames and the last
15 frames of each testing sequence. These artificially gen-
erated data are defined as frame loss data.

In experiments, 100 sequences of ground truth data are
used for training. For each data category, 50 sequences are
used for testing.

Figure 6 shows the � transform of the rushing shape in
different data case. For the cases of incomplete data and
ground truth data, the � transform is similar, but the trans-
form of redundant data varies significantly in the peak of
the curve. In fact, � transform is sensitive to this type of
redundant data which will have negative effect on activity
recognition.

3.3. Activity learning and recognition

The proposed feature descriptor contains the spatial in-
formation about the pose of the human body. The dynamic
information, specifically, the human postures varying with
time characterize the difference between different activities.
HMM is appropriate to characterize the variation of activity
[16], which is trained for each activity class. The number
of model states and GMMs are selected according to expe-
rience (Table 2). Trained HMM models are then used to
compute each model’s similarity to a new input sequence.

Table 2. The number of HMM states and GMMs.
Rush Carry Bend Walk Jump

States 2 2 3 2 3
GMMs 1 1 2 1 2

Because � transform is non-orthogonal, the shape vec-
tor of 180 dimensionality is redundant. In general, PCA is
used to obtain the compact and accurate information in each
video sequence. According to primary analysis of each ac-
tivity, we find that 15 principal components are enough to
represent the 98% variance. However, in experiments, the
performance is not satisfactory. So we try other methods to
reduce the dimensionality of feature vector for each frame.

For each frame in activity sequence, the shape vector of
180-D is divided into 3 parts and thus a feature matrix of
60×3 is formed. Then PCA is used to reduce the dimen-
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Figure 6. � transform for data of different qualities.
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Figure 7. The curve of activity recognition rates with different
PCA methods for different data.

sionality of each feature matrix to 2×3. Finally, a vector of
6×1 is concatenated from the 2×3 matrix to train HMM.
Similarly, the shape vector is divided to form matrixes of
45×4 and 30×6. After using PCA, the dimension of these
matrixes are reduced to 2×3 as well. The recognition rates
in different division schemes, which are represent by red
marks in each curve, are shown in Figure 7. Higher recogni-
tion rates are achieved when the dividing scheme proceeds
to 30×6, but with the subtle improvement, the computation
cost gets much higher. To balance computation cost and
recognition rates, we adopt the division scheme of 3×60 in
our HMM parameter learning and testing experiments.
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Figure 8. The recognition rates of � transform with different data
.

Table 3. Recognition results with different data using � transform.
Ground
truth

Frame
loss

Redundant
data

Incomplete
data

Bend
√ √

3Carry,
1Jump

√

Carry
√

1Bend 2Rush
√

Jump 1Walk,
1Rush

1Rush,
2Walk

2Rush,
2Walk

2Rush,
1Walk

Rush
√ √

1Jump,
1Walk

√

Walk
√ √

2Rush,
2Jump

√

Figure 8 illustrates the recognition results with HMMs
in accordance with Table 3 (where

√
means recognizing all

activities correctly, 2Walk means two activities are recog-
nized as “Walk” and so on). Note that there are on 50 se-
quences in each testing class, which are different with train-
ing data. In spite of the high similarities between rushing
and walking, misclassifications never occur in the case of
frame loss data and incomplete data. Our shape descriptor
captures both boundary and internal content of the shape, so
they are more robust to noise, such as internal holes and sep-
arated shape. While in the case of silhouette with shadow,



the performance of � transform is slightly worse than other
cases. This shows that � transform is suitable for the back-
ground segmentation methods with low false positive rate
but keeping some false negative rate [17]. Generally speak-
ing, low level features based on � transform are effective
for recognizing similar activity even in the case of noisy
data.

3.4. Comparison with contour-based Fourier de-
scriptor

To demonstrate the superiority of the feature representa-
tion ability based on � transform extracted from each frame
of a surveillance video, a comparison experiment is con-
ducted with contour-based features. In our experiments,
512 points are sampled to represent the outer contour of
each object using a border following algorithm based on
connectivity. However, the completed contour may be di-
vided into several parts because of noise, occlusion and
color similarity with background. Here the major part is
selected as the required contour after erosion and dilatation
with rectangle template (10 × 4).

Each point on the contour can be represented by zk =
xk + iyk, (k = 1, . . . , 512). We unwrap each moving con-
tour counterclockwise from the top point, and use point
sequence to express each contour as a complex vector
[z1, z2 . . . , z512]. Then Fourier descriptors, a sequence of
complex coefficients of Fourier transform for contour vec-
tor, represent the shape of an object in the frequency do-
main, where the low frequencies symbolize the general con-
tour, and the high frequencies represent the details of the
contour. In our experiments, the coefficients from 1 to 15
are selected as features. HMMs with the same structure are
also used in activity training and recognition.
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Figure 9. Recognition rate of � transform and Fourier descriptor.

From Figure 9, �-transform method generally performs
better than the Fourier-based method. In experiments, an
object could be several disconnected parts or contains holes.
Because the Fourier descriptors could not extract the in-

terior information in the contour, the spatial information
could not represent the original shapes accurately, while �
transform takes all the information within the shape into ac-
count, so it is capable of capturing the intrinsic characteris-
tics of the shapes.

3.5. Comparison with silhouette-based moment de-
scriptor

Moments are used to describe silhouette, which have
many desirable properties such as rotation invariance and
multi-level representation. Moreover, different moments
have their own advantages; Zernike Moment (ZM) and
pseudo-Zernike (p-ZM) are robust to noise, Wavelet mo-
ment (WM) has efficient feature extraction ability, and In-
variant moment (IM) has low computation cost. In this pa-
per, the feature expression capability, robustness and com-
putation cost of these moments are compared with � trans-
form.

3.5.1 Invariant Moments

A set of 7 invariant moments (IM) which are invariant to
rotation, scaling and translation are given by Hu in 1961
[18]. Four of them are used in our activity recognition.

φ1 = η20 + η02 (10)

φ2 = (η20 − η02)2 + 4η2
11 (11)

φ3 = (η30 − 3η12)2 + (3η21 − η03)2 (12)

φ4 = (η30 + η12)2 + (η21 + η03)2 (13)

where ηpq = µpq

µγ
00

, µpq is central moment of a digital image

f(x, y) and γ = 1 + (p+q)
2 for p + q = 2, 3... [18].

3.5.2 Zernike Moments

The Zernike function of order p with repetition q is defined
in the polar coordinate system (r, θ) as

Vn,m(x, y) = Vn,m(r cos θ, r sin θ) = Rn,m(r)ejmθ, x2+y2 ≤ 1
(14)

where Rn,m(r) is the orthogonal radial polynomials, which
are orthogonal over the interior of the unit circle x2 + y2 =
1.

Rn,m(r) =

(n−|m|)
2∑

s=0

(−1)s (n − s)!

s! × (n−2s+|m|
2 )!(n−2s−|m|

2 )!
rn−2s

(15)
For a digital image f(x, y) in the polar coordinate, ZM is
given by [19]:

Znm =
n + 1

π

∑
r

∑
θ

f(r, θ)V ∗
n,m(r, θ) �r�θ (16)

where n = 0, 1, 2...; 0 ≤ |m| ≤ n; and n − |m| is even.



3.5.3 Pseudo-Zernike Moments

Pseudo-Zernike moment differs from Zernike moment in
that the real-valued radial polynomial are defined as [20]:

Rn,m(r) =
n−|m|∑
s=0

(−1)s (2n + 1 − s)!
s! × (n − s + |m|)!(n − s − |m|)!r

n−s

(17)
where n = 0, 1, 2...; 0 ≤ |m| ≤ n.

3.5.4 Wavelet Moments

According to [21], wavelet transform is particularly suited
for extracting local discriminative features. Here we use the
cubic B-spline as mother wavelet:

ϕ(r) =
4αn+1√
2π(n + 1)

σω×cos(2πf0(2r−1))exp(− (2r − 1)2

2σ2
ω(n + 1)

)

(18)
where n = 3, α = 0.697066, f0 = 0.409177, and σ2

ω =
0.561145. The cubic B-spline wavelet moments for a digital
image f(x, y) in the polar coordinate can be defined as [22]:

Wm,n,q =
∑

r

∑
θ

f(r, θ)ϕm,n(r)e−iqθ �r�θ (19)

where
ϕm,n(r) = 2

m
2 ϕ(2mr − 0.5n) (20)

m = 0, 1, 2, 3, ..., n = 0, 1, ...2m+1 and q = 0, 1, 2, 3
It is easy to prove that Hu Moment is invariant to scale,

translation and rotation, and other moments are rotation in-
variance. Compared with � transform, silhouette normal-
ization is needed when using the moments in activity recog-
nition.

Table 4. Time cost for different silhouette-based methods.
IM ZM p-ZM WM �

TC 0.031s 0.078s 0.109s 0.234s 0.047s

For an image of 320 × 240 pixels, Table 4 lists the com-
puting time (TC) of each moment and � transform. The
results are obtained by MATLAB on a Pentium 4, 3.2 GHz
running under window XP. Obviously, WM has the highest
computational cost while IM has the lowest TC. The pro-
cessing time in the case of 2D � transform is about 0.047s,
just higher than IM.

The first 5 columns of Figure 10 demonstrate that the
recognition rate of WM is superior to those of other de-
scriptors in the case of ground truth data. However, IM
and � transform obtain good recognition rates just slightly
lower than WM. We may explain this by Table 5. The re-
sults show that WM can discriminant similar activity with
subtle differences such as walking and rushing while other
moments could not. However, � transform obtains similar
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Figure 10. The recognition rates for moments and � transform.

Table 5. Recognition results with ground truth.
Activity IM ZM p-ZM WM �

Bend
√ √ √ √ √

Carry
√

2Walk 1Walk
√

1Jump
Jump 1Bend 1Rush,

1Walk
2Rush 1Walk 1Walk

Rush 1Walk 2Walk,
1Carry

3Walk
√ √

Walk
√

1Rush,
1Carry

1Rush,
1Carry

√ √

Table 6. Recognition results with frame loss data.
Data IM ZM p-ZM WM �
First 65% 48% 55.6% 77.8% 93%

Middle 72.7% 52.8% 47.2% 75% 94%
Last 78% 55% 60% 90% 95%

results.
Table 6 illustrates the recognition rates of frame loss

data. The lost frames are at different positions of the
whole sequence. Compared with the moments, � transform
achieves the highest recognition rates. From Table 6, the
performance of each moment with the data loss of the last
15 frames are better than those with the data loss of the
first 10 frames. This demonstrates that the influence of first
frames of activity sequence is more significant than that of
last frames. However, for the tested cases of frame loss
in activity sequence, � transform preserves relatively high
recognition rates. This proves that � transform is more ro-
bust to frame loss than the moments.

The last 10 columns of Figure 10 demonstrate the recog-
nition rates with redundant data and incomplete data respec-
tively. For incomplete data, � transform is superior to the
moments, which recognizes all walking and rushing cor-
rectly. For redundant data, recognition rate of each moment
and � transform decreases significantly, so they are all sen-
sitive to data redundancy. For � transform, it is the integral
of lines of all directions, and thus shadows of various shapes



will lead to unstable features extracted from the silhouettes,
which will deteriorate the recognition performance.

4. Conclusion

In this paper, we have proposed to use the � transform
as a shape descriptor to represent the activity in each frame
and employ HMM to model the variations with time.

According to the comparison experiments with common
shape descriptors, the method based on � transform has
several advantages. First, it does not require video align-
ment and is applicable in many scenarios where the back-
ground is known, because � transform is invariant to scale
and translation. Second, � transform gets the high recogni-
tion rate for similar but actually different shape sequences,
and even in the case of frame loss data and incomplete data.
Third, our shape descriptor captures both boundary and in-
ternal content of the shape. For this reason, it is more robust
to noise, internal holes and separated shape. Finally, the
computation of shape descriptor is linear, so the computa-
tion cost of 2D � transform is low. Moreover, this approach
can also be applied to other tasks such as gait recognition,
content-based image retrieval and face animation.

Our future work will focus on evaluation of the feature
descriptor on large dataset, and the scalability of the pro-
posed method.
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