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Abstract

The log-likelihood function of threshold vector error correction models is neither differentiable, nor smooth with respect to some
parameters. Therefore, it is very difficult to implement maximum likelihood estimation (MLE) of the model. A new estimation
method, which is based on a hybrid algorithm and MLE, is proposed to resolve this problem. The hybrid algorithm, referred
to as genetic-simulated annealing, not only inherits aspects of genetic-algorithms (GAs), but also avoids premature convergence
by incorporating elements of simulated annealing (SA). Simulation experiments demonstrate that the proposed method allows to
estimate the parameters of larger cointegrating systems. Additionally, numerical results show that the hybrid algorithm does a better
job than either SA or GA alone.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Balke and Fomby (1997) introduced the bivariate threshold vector error correction model (TVECM) as an extension
of the linear cointegration model (Johansen, 1988). The TVECM incorporating threshold-nonlinearity in cointegration
allows for nonlinear adjustment to long-run equilibrium. Before introducing the TVECM representation, we briefly
review the concept of cointegration or “long-run equilibrium”. Let xt be a p × 1 dimensional time series integrated of
order 1, or simply I (1). The vector time series xt is said to be cointegrated if there exists a p × 1 vector of parameters
�, called cointegrating vector, such that �′xt is stationary or I (0).

Let us consider the following general two-regime threshold cointegrated model with one cointegrating relation,

�xt = � + (� + � · I {zt−1 > �})zt−1 +
l−1∑
i=1

�′
i�xt−i + ut , t = 1, 2, . . . , n, (1)

where �xt = xt − xt−1, � is an intercept term, � and � are both p × 1 adjustment vectors, I {·} is the indicator function,
zt−1 = �′xt−1 is the error correction term, � is the threshold parameter, �i (i = 1, . . . , l − 1) are p × p coefficient

∗ Corresponding author. Tel.: +86 29 88494347; fax: +86 29 88491214.
E-mail address: yzeagle@163.com (Z. Yang).

0167-9473/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2007.06.003

http://www.elsevier.com/locate/csda
mailto:yzeagle@163.com


110 Z. Yang et al. / Computational Statistics & Data Analysis 52 (2007) 109–120

matrices, and {ut } is a sequence of independent and identically distributed random vectors with mean zero and positive
definite covariance matrix �.

One of the key challenges consists in estimating the parameters of the TVECM, since the likelihood function is not
smooth and differentiable with respect to the threshold parameter � and the cointegrating vector �. In order to estimate
the threshold parameter of the TVECM, Lo and Zivot (2001) proposed sequential multivariate least squares estimation.
The estimation was implemented under a required assumption that the TVECM had a known cointegrating vector.
Hansen and Seo (2002) developed a quasi-maximum likelihood estimation (quasi-MLE) approach for the threshold
cointegrating model. Their method involved a combination of grid search and MLE. In the case p = 2, grid search
might be effective.1 But in higher dimensional cases, grid search becomes ineffective. Furthermore, the precision of
the numerical estimates would be reduced when the parameters maximizing the log-likelihood function do not happen
to lie exactly on a grid point. Therefore, the grid search could be replaced by a genetic algorithm (GA) in higher
dimensional cases.

GA has been successfully used in a wide range of differentiable, nondifferentiable, and discontinuous optimization
problems encountered in engineering and economic applications (see, e.g. Baragona et al., 2004, Winker and Gilli,
2004). However, GA has two major limitations (Wong and Wong, 1994, Jeong and Lee, 1996). First, the performance
might deteriorate as the problem size grows. In fact, with a growing size of the problem, GA requires a larger population
to obtain a satisfactory solution. Second, premature convergence might occur when the GA cannot find the optimal
solution due to loss of some important characters (genes) in candidate solutions.

A hybrid algorithm, which combines aspects of GA and simulated annealing (SA) (Kirkpatrick et al., 1983) is
proposed to overcome the limitations of GA. The performance of GA can be improved by introducing more diversity
among the chromosomes in the early stage of the solution process so that premature convergence can be eliminated. To
implement this idea, the Metropolis acceptance test technique from SA is adopted into GA. The new hybrid algorithm,
referenced to as genetic-simulated annealing or GSA, has been shown to overcome the poor convergence properties of
GA and outperform GA or SA along by Chen et al. (1998).

This paper proposes a new method combining GSA and MLE for estimating the parameters of the TVECM, which
is motivated by Lo and Zivot (2001) and Hansen and Seo (2002). Initially, the threshold parameter � and the cointe-
grating vector � are estimated by GSA. Subsequently, the remaining parameters are computed by maximum likelihood
estimation. In comparison with sequential multivariate least squares, this method implements the estimation when both
the cointegrating vector and the threshold parameter are unknown. More importantly, the method is unrestricted with
respect to the dimension of the model.

The rest of this paper is organized as follows. In Section 2, the quasi-maximum likelihood estimation is introduced.
Section 3 presents GSA and the detailed steps for the parameter estimation of TVECM. The simulation examples in
Section 4 show that the method works well, and GSA performs better than GA and SA alone in terms of the mean and
the standard errors of the estimated parameters. Section 5 concludes.

2. Quasi-MLE for TVECM

Let 	=(�, �, �, �, �) ∈ 
 denote the parameter vector, where �=(�′
1, �

′
2, . . . ,�

′
l−1)

′. The log-likelihood function,
with the auxiliary condition that ut is normally distributed, is given by

Ln(�, �, 	) = −n

2
log |�| − 1

2

n∑
t=1

ut (�, �, 	)′�−1ut (�, �, 	), (2)

where

ut = �xt − � − (� + � · I {zt−1 > �})zt−1 −
l−1∑
i=1

�′
i�xt−i .

Let Υ = [�L, �U ] denote the empirical support of zt−1, and let B be a p − 1 dimensional space which can be
interpreted as a (large) confidence interval for � constructed from the linear estimate �̃ (for example, based on the

1 A convenient normalization condition is to set the first element of � equal to unity. In case p = 2, the parameters (�, �2) were estimated using
grid search.
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asymptotic normal approximation). We denote 	̂(�, �) as the MLE of 	 for known (� × �) ∈ (Υ × B), whereΥ ∈ R1

and B ∈ Rp−1. The first-order conditions of the likelihood function are given by

�Ln(�, �, 	̂)

��′ =
n∑

t=1

û′
t �̂

−1 = 0, (3)

�Ln(�, �, 	̂)

��′
=

n∑
t=1

I {zt−1 > �}zt−1û
′
t �̂

−1
�̂ = 0, (4)

�Ln(�, �, 	̂)

��′ =
n∑

t=1

zt−1û
′
t �̂

−1 = 0, (5)

�Ln(�, �, 	̂)

��′
i

=
n∑

t=1

�xt−i û
′
t �̂

−1 = 0, i = 1, 2, . . . , l − 1, (6)

and

�̂ = n−1
n∑

t=1

û′
t ût , (7)

where ût = ut (�, �, 	̂) in Eq. (1).
The concentrated likelihood function is

Ln(�, �) = Ln(�, �, 	̂(�, �))

= − n

2
log |�̂(�, �)| − np

2
. (8)

The MLE estimators (�̂, �̂) of the parameters (�, �) are defined as any values of (�, �) minimizing log |�̂(�, �)|. Then,
the MLE for 	 is 	 = 	̂(�̂, �̂).

The criterion function (8) is not smooth, so conventional gradient hill-climbing algorithms are not suitable for its
maximization. In the case p = 2, Hansen and Seo (2002) use a grid search over the two-dimensional space (Υ × B)

to find (�̂, �̂2) as the values of (�, �2) on this grid which yield the largest value of the likelihood function (8).

3. GSA Algorithm

List of principle symbols

Ln log-likelihood function
F fitness function
�F the change in fitness
fi normalized fitness of the ith chromosome
� amount of deteriorated fitness measure
T temperature
T0 initial temperature
� temperature reduction factor
pc crossover probability
pm mutation probability
Np population size
g number of iteration (generation)

GSA is a hybrid method that inherits the parallel search of GA by incorporating the Metropolis rule of SA. GSA
enables a powerful implementation that avoids the inherent weaknesses of optimization processes of both GA and SA.
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By exploiting the population mechanism and crossover/mutation operator of GA, the algorithm is naturally parallel.
By exploiting the local selection strategy of SA, the risk of premature convergence of GA is reduced.

For later illustrating the hybrid algorithm, a few terms need to be clarified.
Gene and chromosome are two basic concepts in evolution theory. Every gene and chromosome, respectively,

represents a parameter of the estimation problem and a “candidate solution”. To avoid the need to convert binary
numbers into their decimal equivalents for the SA operator, this paper proposes the use of floating-point (real-coded)
numbers to present each chromosome instead of binary representation (Zhou and Wang, 2005).

In the present estimation, let �, �2, . . . , �p−1 and �p denote genes. The symbol “y” denotes a chromosome, which
is made up of p genes, i.e. y = (�, �2, . . . , �p). During each iteration g, GSA maintains a population of potential
chromosomes (solutions) P(g) = {y1(g), y2(g), . . . , yNp(g)}, where Np denotes the population size.

Population denotes a set of the chromosomes from the species of “candidate solution”. There is no clear indication
as to how large a population should be. If the population is too large, there may be difficulties in storing the data, but
if the population is too small, there may not be enough chromosomes for good crossovers. In the experiments, the
populations range from 10 to 100.

Fitness function evaluates the “fitness” of a chromosome as a solution to the optimization problem. The objective
function of the estimation problem is the likelihood function Ln in (8). For estimating parameters of the model using
GSA, we propose the following fitness function:

F(y) = Ln(�, �) + C, (9)

where C is a positive integer that guarantees a positive fitness, i.e. C > |Ln(�̂, �̂)|.
The population of chromosomes evolves from generation to the next through four main operators including selection,

crossover, mutation and the Metropolis acceptance rule.
Selection. Chromosomes of the current population are selected as suitable subjects for development of the next

generation based on their fitness. For each chromosome yj (j =1, . . . , Np) in the current population P(g), evaluate the
fitness measure by the fitness function F(yj ). Let Fj denote the fitness of the j th chromosome, its normalized fitness
fj is formed:

fj = Fj/�Fi . (10)

Assign the normalized fitness measure of the chromosomes as the probabilities for the chromosomes to be chosen as
parents for the production of the “next” generation. The Roulette wheel method (Goldberg, 1989) is used to realize the
selection. To ensure that at least one of the best chromosomes is reproduced to the next generation, the elitist strategy
(Gudla and Ganguli, 2005) is also used at the same time.

Crossover. Crossover is a mechanism for probabilistic inheritance of useful information from two fit individuals to
their offspring. The main idea is that the genetic information of a good solution is spread over the entire population. Thus,
the best solution can be obtained by thoroughly combining the chromosomes in the population. Crossover operation
achieves recombination of the genetic material. The recombination process includes domain specific knowledge to
enforce the inheritance of desirable features from individuals of the current population. The following crossover
operators have been used in this work.

In order to take advantage of the real-coded representation to increase the convergence rate of the GSA, we use
flat crossover (Goldberg, 1991). For every y in the population, draw a random number r from [0, 1]; if r �pc, where
pc is the crossover probability, y is selected for crossover. The chromosomes yi = (y1,i , y2,i , . . . , yp,i)

′ and yj =
(y1,j , y2,j , . . . , yp,j )

′ selected for crossover are randomly paired off to produce two offspring y′
i and y′

j per mating as
follows:{

y′
k,i = rc ∗ yk,i + (1 − rc) ∗ yk,j ,

y′
k,j = rc ∗ yk,j + (1 − rc) ∗ yk,i ,

(11)

where k = 1, 2, . . . , p, and rc is a random number from [0, 1].
Mutation. Mutation is a means of introducing new information into the population. For each chromosome y, we

draw a random number r from [0, 1]. If r �pm, where pm is the probability of mutation, y is selected for mutation.
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If rm is a random number from [0, 1], the result of the mutation is

y′
k,i = yk,i + �(k), (12)

where k = 1, 2, . . . , p, and �(k) = 0.1 ∗ rm denotes a perturbation.
Metropolis acceptance rule is one of the important core concepts of the GSA algorithm, which simulates the annealing

process at a given temperature (Metropolis et al., 1953). In the neighborhood of two selected parent chromosomes, two
child chromosomes were produced using the crossover operator and mutation operator. One child and one parent are
taken out from the four chromosomes arbitrarily. If the fitness value of the child is better than the fitness value of the
parent, then the child chromosome is accepted and used to generate a new chromosome for the next generation. If the
child has a lower fitness in comparison to the parent, the Metropolis rule accepts the child on a probabilistic basis. A
random number is generated in the range 0 to 1. If this random number is smaller than e�F/T , where �F =Fchild−Fparent
is the amount of deterioration between the child and parent and T is the current temperature, the inferior child is accepted.
The same procedure is applied to the other pair of child and parent. This criterion for accepting the new chromosome
is known as the Metropolis criterion.

Initial temperature. The GSA algorithm starts from a lower temperature than the SA algorithm. If this initial value
of temperature is too high, it causes a waste of processing time. The temperature parameter is initialized using
the procedure described in Youssef et al. (2001). Let M denote a constant number of moves in the neighborhood
of the current solution. Then, the fitness difference for each move i, �Fi is given by �Fi = Fi − Fi−1. Let Mu and Md
be the number of uphill and downhill moves, respectively (M = Mu + Md). The average �Fd is then given by

�Fd = 1

Md

Md∑
i=1

�Fi .

In order to keep the probability P0 of accepting uphill moves high in the initial stage of GSA, we estimate the values
of the temperature parameter by substituting the value of P0 in the following expression derived from the Metropolis
function:

T0 = �Fd

ln(P0)
, (13)

where P0 ≈ 1(P0 = 0.999). The GSA started from a lower temperature to make the Metropolis function e�F/T lower
than the SA. Since the GSA took the population evolution, the candidate solution could be easily found even though
e�F/T was small.

Stopping criterion.The global searching is stopped when generations g = Num, where Num is the predetermined
number of generations, or the final Tg < 0.001, where Tg = �Tg−1 and � denotes the cooling rate.

The GSA algorithm is implemented with Matlab 7.0 for Windows on a Pentium IV, the structure of the GSA for the
parameter estimation is given below. For the pseudo codes for SA and GA see Winker and Gilli (2004).

Procedure of the GSA.

Initialize population P(0) of size Np, initialize T0, and set g = 0;
while stopping criteria not met do

Evaluate fitness of the population P(g).
for j = 1 to Np do

Select two chromosomes P ′(g) from P(g) randomly
Apply the crossover operator on P ′(g) to produce P ′′(g)

Perform mutation operator on P ′′(g) to produce P ′′′(g)

Evaluate fitness of chromosomes P ′′′(g)

Perform Metropolis rule for P ′′′(g) and P ′(g) to generate two chromosomes of the
next generation P(g + 1)

end for
g = g + 1, Tg = �Tg−1

end while
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Fig. 1. Time plots of the simulated series. The curves of x1t , x2t and x3t are displayed by solid, dashed and dotted lines, respectively.

4. Simulation examples

4.1. A simulated data

A Monte Carlo experiment is performed to illustrate our algorithm proposed in this paper. The experiment is based
on a three-dimensional threshold error correction model while the data are generated from the first-order VAR. Let
xt = (x1t , x2t , x3t )

′ and zt = �′xt , the two-regimes threshold model is

�xt = � + (� + � · I {zt−1 > �})zt−1 + �′
1�xt−1 + ut , (14)

where

� =
(0.0

0.0
0.0

)
, � =

(1.0
−0.7
−0.3

)
, � =

(−0.3
0.5
−0.4

)
, � =

(0.1
−0.1
0.2

)
, �1 =

(0.4 0.0 − 0.1
0.0 0.2 0.0
0.0 0.0 0.3

)
,

and set �=−0.4. We generated a single realization of the error variables ut ∼ N(0, �), where � is an identity covariance
matrix.

We consider two sample sizes, n = 100 and 250. Following data generating process (14), the simulated data are
displayed in Fig. 1 with sample size n = 250. In Fig. 2, we illustrate the nondifferentiability of the criterion function.
Fig. 2 (a) plots criterion (9) as a function of � with � concentrated out, and Fig. 2 (b) plots the criterion as a function
of �2 and �3 with � concentrated out, notice that �1 = 1.0.

4.2. Parameter estimation by GSA

In order to compare the results, we estimate the parameters �, �2 and �3 using SA, GA and GSA, respectively. The
chosen values of the parameters in the algorithms are provided in Table 1. For instance, the population size of 30 for
GA in Table 1 means a population of 30 feasible and valid candidate solutions, and in each generation the number
of offspring produced is the same as the number of parents. The probability of crossover Pc is set to 80%, and the
probability of mutation Pm to 10% for GA. In the experiment, the stopping criteria in GSA and GA are set to a fixed
number of generations of 450. And SA stops if the final temperature Tg is less than 0.001.

The average, worst and best log-likelihood provided by the algorithms in 1000 replications for the given single
realization are summarized in Table 2. The results show that GSA is more robust than SA and GA for the parameter
estimation. And the average value found by GSA is higher than those found by SA and GA, which confirms that GSA is
well capable of determining the global or near-global optimum solution.Although GA can find the best log-likelihood in
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Fig. 2. Concentrated negative log-likelihood, (a) � and (b) �2 and �3.

Table 1
Parameter values for the execution of three algorithms

Adapted parameter SA GA GSA

Population size (Np) 1 30 10
Number of iteration (g) 450 450
Probability of crossover (Pc) 0.8 0.6
Probability of mutation (Pm) 0.1 0.1
Initial temperature (T0) 1000 100
Cooling rate (�) 0.98 0.60

Table 2
Comparison of the best, worst and average log-likelihood values

Algorithms n = 100 n = 250

Best Average Worst Best Average Worst

SA −156.4331 −157.9354 −181.4879 −372.8944 −374.7210 −448.7880
GA −156.2712 −156.9070 −166.2627 −372.8347 −374.8128 −419.7776
GSA −156.2516 −156.3082 −156.6139 −372.8236 −372.9273 −373.3054

Table 3
Execution times(s) of the three algorithms

Algorithms n = 100 n = 250

Shortest Average Longest Shortest Average Longest

SA 31.6785 36.5594 46.4806 30.4563 38.7634 44.0562
GA 25.3052 26.0045 27.6281 26.0890 27.3622 27.8248
GSA 23.2527 23.8972 24.5360 23.8656 24.6941 25.7463

one execution, it can also produce a lower quality in another execution due to the premature convergence phenomenon.
Therefore, the performance of GA appears to be not as reliable as GSA.

Table 3 gives an overview on the relative execution times required by the three different algorithms. GSA is the fastest
algorithm as can be observed based on the parameter settings from Table 1. The execution time is variable depending
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Table 4
Distribution of estimation (threshold and cointegrating vector)

Algorithms Mean RMSE MAE Percentiles (%)

5 25 50 75 95

n = 100
�̂ − � SA 0.0836 0.6910 0.5814 −0.9714 −0.4647 0.1124 0.7986 1.0550

GA −0.0023 0.1124 0.0854 −0.1867 −0.0808 0.0051 0.0703 0.1284
GSA −0.0064 0.0116 0.0074 −0.0280 −0.0127 −0.0007 0.0002 0.0019

�̂2 − �2 SA −0.0001 0.0295 0.0136 −0.0242 −0.0168 −0.0008 0.0045 0.0215
GA 0.0141 0.0595 0.0320 −0.0290 −0.0111 −0.0019 0.0197 0.0807
GSA −0.0021 0.0116 0.0086 −0.0155 −0.0087 −0.0042 −0.0010 0.0151

�̂3 − �3 SA −0.0033 0.0426 0.0153 −0.0324 −0.0150 −0.0043 0.0014 0.0077
GA −0.0144 0.0483 0.0260 −0.0774 −0.0215 −0.0074 0.0006 0.0055
GSA −0.0064 0.0116 0.0074 −0.0280 −0.0127 −0.0007 0.0002 0.0019

n = 250
�̂ − � SA 0.0878 0.3349 0.2418 −0.3141 −0.0950 0.0193 0.1251 0.6091

GA 0.1006 0.1431 0.1192 −0.0762 0.0373 0.1047 0.1561 0.2323
GSA 0.0789 0.1265 0.1086 −0.0757 0.0316 0.0973 0.1405 0.2019

�̂2 − �2 SA 0.0094 0.1610 0.0230 −0.0135 −0.0100 −0.0062 −0.0035 −0.0002
GA −0.0088 0.0191 0.0131 −0.0480 −0.0109 −0.0089 −0.0049 0.0019
GSA −0.0070 0.0079 0.0073 −0.0106 −0.0093 −0.0086 −0.0048 −0.0007

�̂3 − �3 SA 0.0061 0.0117 0.0066 −0.0020 0.0014 0.0068 0.0086 0.0100
GA 0.0139 0.0341 0.0156 −0.0026 0.0043 0.0074 0.0100 0.0172
GSA 0.0057 0.0069 0.0059 0.0006 0.0030 0.0061 0.0088 0.0103

on the different parameter settings, such as the populations size Np. We just present them to provide a rough estimate
of the relative time consumption of the three algorithms. Note that the execution times are not much influenced by the
actual sample size.

We consider the estimation of three parameters, the threshold parameter � and the cointegrating vector �2 and �3. In
Table 4, we report the mean, root mean squared error (RMSE), mean absolute error (MAE) following Hansen and Seo
(2002), all with regard to the parameters of the data generating process and selected percentiles of each estimator in
1000 simulation replications.

The results in Table 4 indicate that GSA outperforms SA and GA by contrasting the means and standard errors
of the parameter estimation. First, for n = 100, there are no statistically significant differences in bias among the
three estimation procedures. For n = 250, the estimators using GSA are more accurate than those using SA and/or
GA. Second, GSA has a slightly lower RMSE and MAE. Finally, the estimator based on GSA has considerably less
dispersion than those using SA and/or GA. It is interesting to remark that the estimates based on GSA and GA are
influenced much less by the choice of initial values than the estimates based on SA.

For illustrating the performance of the three algorithms, the estimated values of one replication are displayed in
Fig. 3. Fig. 3(a) is a plot of the estimated values of the log-likelihood Ln versus the number of iterations or generations.
Similarly, Fig. 3(b)–(d) plot the estimated values of parameters �, �2 and �3, respectively.

From Fig. 3(a), it can be shown that GSA has quickly converged to the largest log-likelihood value after about
100 iterations while GA converges to the largest value after about 200 iterations. In contrast, SA finds the maximum
log-likelihood value about 300 iterations. The slow speed of convergence for the SA is partly due to the fact that the
new solutions are selected at three directions in the neighborhood of the current solution, which results in a small fitness
difference between the original solution and the new solution. Hence, SA exhibits high fluctuation since solutions with
inferior fitness are accepted even at relatively low temperature according to the Metropolis rule. Fig. 3(c) and (d) shows
that all three algorithms converge to the exact values of �2 and �3, but GA and SA in Fig. 3(b) do not converge to the true
value of �. This happens because there is a plateau of log-likelihood values with the regard to the threshold � in the range
of (−0.5, −0.3), see Fig. 2(a). As a matter of fact GSA exhibits much better performance than SA and GA in Fig. 3.
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Fig. 3. Comparison of estimation of GSA, SA and GA. (a) Estimated values of log-likelihood Ln, (b) estimated values of �, (c) estimated values of
�2, (d) estimated values of �3. GSA is displayed by solid line. GA is plotted by dashed line and SA is dotted line.

4.3. Parameter estimation by MLE

We consider in this subsection the remaining parameters in the TVECM using MLE. According to Eqs. (3)–(7), the
adjustment vectors � and �, the matrices of coefficients �1 and the covariance matrix � are estimated following the
estimated values of parameters �, �2 and �3. To save space, we report the results for the adjustment vectors � and �
only.

In Table 5 we report the mean, RMSE, MAE and selected percentiles of each estimator in 1000 optimization runs for
� and �. The results of estimation clearly show that GSA-based MLE outperforms GA-based MLE and SA-based MLE.
The method seems to be very accurate, since these mean values are close to zero and the RMSE, MAE are smaller than
for the other methods from 1000 executions.

4.4. Robustness of GSA-based MLE

So far, we analyze the performance of GSA-based MLE in a single realization. Next, we consider the impact of some
changes in the simulated data generated by the model (14). In order to check the robustness of the process, two cases
are considered.
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Table 5
Estimation of adjustment vectors

Algorithms Mean RMSE MAE Percentiles (%)

5 25 50 75 95

n = 100
�̂1 − �1 SA −0.0739 0.2386 0.1171 −0.1367 −0.1163 −0.1037 −0.0933 −0.0323

GA −0.1372 0.1787 0.1372 −0.3880 −0.1252 −0.1060 −0.0962 −0.0738
GSA −0.1058 0.1071 0.1058 −0.1504 −0.1114 −0.1043 −0.0975 −0.0895

�̂2 − �2 SA −0.0478 0.5896 0.0734 −0.0154 0.0052 0.0111 0.0197 0.0284
GA 0.0251 0.0685 0.0357 −0.0290 −0.0009 0.0112 0.0313 0.0753
GSA 0.0115 0.0186 0.0145 −0.0145 0.0034 0.0101 0.0198 0.0288

�̂3 − �3 SA 0.0561 0.3774 0.0803 −0.0618 −0.0234 0.0371 0.0481 0.0555
GA 0.0432 0.0567 0.0492 0.0154 0.0333 0.0464 0.0589 0.0673
GSA 0.0440 0.0452 0.0440 0.0302 0.0379 0.0431 0.0516 0.0580

�̂1 − �1 SA −0.0937 0.0995 0.0971 −0.1410 −0.0961 −0.0915 −0.0844 −0.0744
GA −0.0819 0.0884 0.0861 −0.1112 −0.0970 −0.0901 −0.0820 −0.0621
GSA −0.0919 0.0992 0.0919 −0.1073 −0.0950 −0.0910 −0.0877 −0.0839

�̂2 − �2 SA 0.0421 0.0603 0.0494 0.0201 0.0413 0.0470 0.0516 0.0572
GA 0.0331 0.0613 0.0519 −0.0932 0.0334 0.0474 0.0579 0.0698
GSA 0.0481 0.0492 0.0481 0.0304 0.0421 0.0472 0.0535 0.0622

�̂3 − �3 SA 0.1142 0.1182 0.1142 0.0877 0.0934 0.0963 0.1398 0.1716
GA 0.0972 0.0996 0.0972 0.0809 0.0881 0.0906 0.0983 0.1253
GSA 0.0912 0.0913 0.0912 0.0863 0.0883 0.0889 0.0941 0.0976

n = 250
�̂1 − �1 SA 0.1265 0.7709 0.1265 0.0408 0.0452 0.0493 0.0548 0.0597

GA 0.0501 0.0533 0.0514 0.0167 0.0477 0.0517 0.0550 0.0625
GSA 0.0503 0.0504 0.0503 0.0420 0.0477 0.0511 0.0534 0.0546

�̂2 − �2 SA −0.0494 0.0545 0.0528 −0.0616 −0.0574 −0.0524 −0.0445 −0.0414
GA −0.0493 0.0561 0.0536 −0.0724 −0.0582 −0.0531 −0.0471 −0.0395
GSA −0.0520 0.0524 0.0520 −0.0603 −0.0561 −0.0528 −0.0492 −0.0427

�̂3 − �3 SA −0.0497 0.4263 0.0500 −0.0180 −0.0105 −0.0068 −0.0034 0.0004
GA −0.0163 0.0433 0.0194 −0.0854 −0.0141 −0.0085 −0.0035 0.0020
GSA −0.0079 0.0096 0.0082 −0.0170 −0.0117 −0.0077 −0.0041 −0.0003

�̂1 − �1 SA 0.0235 0.0298 0.0235 0.0139 0.0182 0.0215 0.0252 0.0281
GA 0.0294 0.0388 0.0294 0.0157 0.0204 0.0228 0.0259 0.0448
GSA 0.0221 0.0222 0.0221 0.0176 0.0202 0.0217 0.0241 0.0256

�̂2 − �2 SA 0.0373 0.0579 0.0452 0.0273 0.0352 0.0431 0.0474 0.0508
GA 0.0255 0.0624 0.0494 −0.0713 0.0331 0.0407 0.0459 0.0514
GSA 0.0417 0.0422 0.0417 0.0316 0.0367 0.0429 0.0459 0.0496

�̂3 − �3 SA 0.0298 0.0346 0.0298 0.0247 0.0268 0.0277 0.0296 0.0318
GA 0.0328 0.0373 0.0328 0.0237 0.0270 0.0281 0.0297 0.0426
GSA 0.0288 0.0289 0.0288 0.0264 0.0275 0.0282 0.0294 0.0319

Case 1: We generate 1000 different realizations with the sample size T = 250 by changing the disturbance terms ut

in the data generating process (14).2

Case 2: The data generating processes (14) are tried for various sample sizes T = 100, 250 and 500. The parameters
are varied with (i) (� = 0.2, �3 = −0.0); (ii) (� = 0.0, �2 = −0.8) and (iii) (�2 = 0.2, �3 = −0.6).

2 A referee kindly suggested analyzing the robustness of Case 1.
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Table 6
Mean and RMSE of the estimator

SA-based MLE GA-based MLE GSA-based MLE

Mean RMSE Mean RMSE Mean RMSE

�̂ − � 0.1032 0.3765 0.0963 0.1846 0.0852 0.1318

�̂2 − �2 0.0121 0.1089 −0.0095 0.0154 −0.0077 0.0082

�̂3 − �3 0.0072 0.0128 0.0147 0.0295 0.0063 0.0076
�̂1 − �1 0.0936 0.2813 0.0428 0.0524 0.0376 0.0403
�̂2 − �2 −0.0554 0.0607 −0.0531 0.0572 −0.0515 0.0520
�̂3 − �3 −0.0486 0.0834 −0.0206 0.0358 −0.0092 0.0116
�̂1 − �1 0.0242 0.0283 0.0283 0.0331 0.0251 0.0267
�̂2 − �2 0.0484 0.0626 0.0381 0.0716 0.0456 0.0462
�̂3 − �3 0.0326 0.0410 0.0405 0.0488 0.0322 0.0346

Under Case 1, we apply all three methods to each single realization. The mean and RMSE are still the measures
of approximation quality for the estimated parameters when a robust measure is needed. The experimental results for
the estimated parameters �, �, � and � reported in Table 6 indicate that the three different heuristics provide estimators
qualitatively not different from those in Tables 4 and 5. As expected, the estimators related to the GSA method are
smaller than those for SA and GA, i.e. the GSA method is more robust than the other methods. Under Case 2, we apply
the optimization heuristics with 1000 replications to the same realization generated by the three different parameters,
respectively. We omit the estimated results since they are very similar to the results in Tables 4 and 5.

5. Conclusion

The parameter estimation for the TVECM has been developed in the literature and practitioners are usually faced
with the problem of restricting the dimension of the models. Consequently, there is a need for more powerful numerical
algorithms that do not restrict the form of the objective function. The quasi-maximum likelihood estimation here
combining GSA and MLE has not been previously used in the context of econometric estimation. In this paper we
illustrated the applicability of the method with examples from some simulated realizations.

For a nondifferential problem such as MLE of the TVECM, the potential contribution of the proposed method is
twofold. First, it can remove the restrictions on the dimension of the TVECM, and it may be applicable in some other
nonlinear econometric models such as the smooth transition error correction models. Second, the core of the proposed
method is the GSA, which takes advantage of the good performance of GA and SA to eliminate the shortcomings of
either GA or SA alone. Through the operations of selection, crossover, mutation and the Metropolis acceptance rule,
the GSA provides a more comprehensive search that efficiently converged to the true coefficients. The effectiveness
and the flexibility are becoming more important as estimation methodology continues to advance for the development
of nonlinear econometric models.
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