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Abstract

In the paper, we present a novel approach to model-
ing plants from images by detecting apex features. First,
an effective algorithm is proposed to extract apex fea-
tures in volumetric data recovered from the images. It
provides position and pose information for assigning
3D generic leaves. Then, the 3D leaf shapes are de-
termined by an optimization based on the volume. Fi-
nally, Branches are modeled by using a particle flow
approach. The proposed method is simply with lim-
ited manual intervention and has the obvious benefit of
knowing a leaf by its visible apex part.

1. Introduction

Modeling plants is a challenging task due to their

complex geometry with serious occlusions. The mod-

eling targets in the paper are plants with relative large

leaves. The method we choose is image-based be-

cause relative to laser data, image data are noiseless

and easily acquired. For reconstruction, the leaves in

images should be identified as individuals. An intuitive

method is to extract each leaf region through segmenta-

tion. However, intelligent segmentation of leaves is an-

other big challenge in computer vision [4] since they are

compact with similar appearances, as seen in Figure 1.

Even a leaf region is correctly indicated (as shown in

Figure 1(a)), the partial visible information can hardly

determine the full leaf shape. Fortunately, we notice

that as local features lying at the tipping points of the

leaves, leaf apexes are more likely visible and recog-

nizable than the leaf region features (as seen from Fig-

ure 1). If we know leaf shapes by their apexes, the plant

can be reconstructed easily.

Motivated by the observations, we propose an apex

detection algorithm in volumetric data which are recov-

ered from a set of images. The algorithm as well obtains

the pose information about leaves. Next, a generic leaf

is modeled by images and attached to each apex. An

optimization process is then performed to further adjust

the leaves in geometry. Finally, particle flows starting

from the leaf bases are used to model branches. The fol-

lowing sections explain in detail our modeling approach

of knowing leaves by their apexes.

Figure 1. (a) An input image with two
kinds of features; (b) and (c) show the
model constructed by detected apexes.

2. Related work

In recent years, plant modeling based on visual

information (images or laser data) attracts many re-

searchers due to its potential in generating realistic

models. Shlyakher et al. [6] introduced image infor-

mation to pilot the L-system. Xu et al. [9] constructed

branches from 3D data based on knowledge and heuris-

tics. Han et al. [1] modeled branches from a single

image using a Bayesian approach. Neubert et al. [3]

used particle flows to simulate branches by images. Tan

et al. [8] modeled trees based on structure from mo-

tion. These methods focus more on the realistic effects
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of branches. By contrast, individual leaf modeling for

plants with relative large leaves should be paid more

attention, as done in [4] and this paper. Quan et al.

[4] combine 2D gradient with 3D depth information to

segment each observed leaf with interactive assistance.

In contrast to their method, the paper obtains 3D leaf

shapes by extracting and analyzing simple apex features

with limited user intervention which can be finished in

seconds.

3. Apex feature extraction

The input for apex feature extraction is a

continuously-connected volumetric model. Here,

we choose the voxel coloring [5] approach with a

photo-consistency constraint to get a geometric vol-

ume. The photo-consistency constraint we adopt is

ZNCC, which is not so sensitive to varying lighting

conditions.

3.1. Sharp feature evaluation

It is observed that an apex lies in the tipping point of

a leaf. Therefore, in this section, we present a geometric

evaluation for the local sharpness property of each voxel

in the volume to find apex positions.

Given a voxel C0 with spatial coordinates �X0, we

choose its continuously connected L-ring neighborhood

(the 1-ring neighborhood of the voxel is its 26 closest

neighbors). Assuming that the coordinates of a voxel in

ring l are �X l
n, where n ∈ N l and N l is the number of

voxels in ring l, its extended length cumulated from �X0

to �X l
n ring by ring along a direction vector �Vi is:

rl
n(�Vi) = ( �X l

n − �X0)T �Vi. (1)

The sharpness of C0, denoted as S, can be evaluated

intuitively by averaging the extended quantities of the

voxels in the L neighborhood rings along an optimal

direction vector �V0, i.e.:

�V0 = argmax
�Vi

(S(�Vi)), (2)

where,

S(�Vi) =
L∑

l=1

1
N l

N l∑

n=1

rl
n(�Vi), (3)

with constraints
�V T

i
�Vi = 1 (4)

rl
n(�Vi) > 0,∀ �X l

n. (5)

By maximizing Eq. 3 with the constraints Eq. 4 and

Eq. 5, we obtain the sharpness score S, along with the

vector �V0. S represents the probability of C0 as a sharp

apex. As explained in the following, �V0 will be the mid-

dle axis of the leaf indicated by C0, when C0 is deter-

mined to be an apex voxel. Assuming that C0 is an

apex and the neighborhood voxels involved in evaluat-

ing S are uniformly distributed in an axial-symmetric

flat cone volume (as shaped near real leaf apexes) with

the vertex C0, �V0 can be easily proved in geometry the

symmetric axis. On the other hand, leaves are generally

symmetric about their middle axes determined by the

leaf apexes and bases. Therefore, in this case, �V0 can be

treated as the leaf’s middle axis direction.

However, the uniform distribution does not exist

due to the cubic voxelization. To address this issue,

we recompute the cumulate extended length rl
n ring by

ring and replace the real distance from a voxel to one

of its closest neighbors (face, edge or corner neighbors)

in the upper ring with a unit 1:

rl
n = 0

l′ = l
while l′ > 0

find a closest neighbor �X l′−1
n for �X l′

n in ring l′−1

rl
n = rl

n +
( �X l′

n − �X l′−1
n )T �Vi

|| �X l′
n − �X l′−1

n ||
l′ = l′ − 1

endwhile

The scores of all the voxels form a spatial field, as

shown in Figure 2(a), from which, we can see that large

values are localized at convex leaf margins, especially

on leaf apexes. The optimal vectors are demonstrated in

Figure 2(b) the right middle axes of leaves.

Figure 2. Apex detection. (a) A score
distribution visualized with the pseudo
bar at the bottom representing ascend-
ing scores from left to right; (b) the ex-
tracted apex features each accompanied
by a direction vector. Each voxel is ren-
dered with alpha= 0.3.



3.2. Apex feature selection

According to the definition of the scores in Eq. 3,

bare and spindly branches gain the highest scores, and

then come cone leaf apexes (as seen from Figure 2(a)).

Based on the regular distribution, we extract apex fea-

tures as follows: 1) A local suppression (in the L-ring

neighborhood) is performed to eliminate the competi-

tion from voxels near real apexes. 2) The features sur-

viving from the above process are put into a queue in

order of the descending scores. 3) An appropriate range

covering correct apex features is indicated by users in

our 3D visual interface. In this way, we can obtain cor-

rect apexes, each has a vector indicating the middle axis

of a corresponding leaf. However, mistakes in the queue

may happen for the reason that the geometric volume

may be noisy and the score of a stubbed branch may be

lower than that of a leaf apex. For robustness, we pro-

vide an extra interface for users to remove or add apex

features by clicking corresponding positions in the vol-

ume. The interaction for indicating the score range and

remedying the mistakes is limited and can be finished

in seconds. For plants with multi-apex leaves, a simple

clustering can be used to group sharp features accord-

ing to some criterions established based on the special

relationship among apexes in the same leaf.

4. Plant reconstruction

To model the leaves of plants, we first generate a

flat generic leaf model (as shown in Figure 3) by seg-

menting a leaf from its most frontal and parallel image.

Next, we put the generic leaf at each apex position by

the corresponding leaf middle axis. The orientation �O
of the leaf plane is determined by analyzing the L-ring

neighborhood voxels using PCA. After leaf assignment

(Figure 3), the geometry of each flat leaf is adjusted as

follows.

4.1. Leaf scaling

To compute the scale of each leaf, we gather more

neighbor voxels by iteratively increasing ring by ring

with the initial L rings. At each iteration, a new ring is

added and the most appropriate scale is computed with

current neighbors by a discrete and finite searching in

a certain scale range. The process stops until the opti-

mal scale in a following iteration brings an fitting error

larger than a given threshold. The error is computed by

first projecting neighbors onto the leaf plane, and then

fitting the projections determining leaf margins to the

margin of that flat leaf.

Figure 3. Leaf assignment. (a) An ex-
tracted leaf image; (b) a generic flat leaf
model; (c) leaves arranged by apex fea-
tures (the green squares).

4.2. Leaf deformation

In this section, each leaf F is locally deformed in

its 3D shape by an optimization process. An energy

function is defined as:

E(F ) = w1Eb(T ) + w2Es(T ) + w3Em(M). (6)

Eb(T ) is a balance term, which is given by:

Eb(T ) =
∑

Ti∈T

∑

�X
Ti
j ∈ �XTi

(( �XTi
j − �CTi

)T �OTi
)2. (7)

T is the triangle set of F . �XTi denotes the voxels whose

projections on the plane of triangle Ti lie in Ti. CTi is

the center of Ti. The term will be at the minimum when

voxels above and below the triangles reach a balance.

Es(T ) is a smooth term, defined as:

Es(T ) =
∑

Ti∈T

∑

Tj∈NeiTi

(tan
θi,j

2
)2. (8)

NeiTi means the 1-ring neighbor triangles of Ti. θi,j

denotes the inter-angle between the normals of Ti and

Tj . The last term Em(M) is a middle axis constraint

(as defined in [2]) used to eliminate undesirable defor-

mations on the middle axis:

Em(M) =
∑

Mi∈M

((
MiMi+1

Msavg
)2 − 1)2. (9)

Mi is a point segmenting the middle axis M . MiMi+1

is the interval between two consecutive points in M .

Msavg is the average interval. The energy will be at the

minimum when MiMi+1 equals to Msavg . The weights

w1, w2 and w3 are used to modulate the three terms.

As done in Section 4.1, neighbors used here should

be gradually increased with the initial L rings by check-

ing in each iteration whether the thickness of the newly



added ring is smaller than a threshold which is approx-

imated by both the real thickness of the leaves and the

size of the voxels. In our experiments, even for leaves

incompletely carved out in the volumetric data, which

results in few neighbors used for deformation, the al-

gorithm is effective due to the existence of the smooth

term and the middle axis term.

4.3. Branch modeling

Once the leaves are reconstructed, we model

branches using the particle flow approach in [3] by re-

placing their parallel projection to be a perspective one

and their initial seeds to be the bases of our constructed

leaves.

5. Results

We test our approach on more than ten plants. Due

to the limited pages, we present the results of three of

them, including a Dieffenbachia (Figure 1), a Neph-

thytis (Figure 4) and a Anthurium scherzerianum (Fig-

ure 5). We take about 20-30 pictures for the plants.

The parameter L used for controlling the size of neigh-

borhood takes around 10. The manual intervention in

constructing the leaves is limited to selecting a generic

leaf, indicating the score range (as described in Sec-

tion 3.2), and adding or removing no more than four

apexes. Users can finish the operations in seconds. The

experiments demonstrate that our approach of knowing

leaves by their apexes can generate realistic models con-

veniently.

Figure 4. Nephthytis. (a) An original
photo; (b) reconstructed model rendered
at nearly the same viewpoint.

6. Discussions

We have presented an approach to modeling plants

by detecting apex features in geometric volumes. Fu-

ture work will focus on quantitative evaluation of plant

modeling approaches and rendering of natural dynamic

plants in virtual scenes.

(a) (b) (c) 

Figure 5. Dieffenbachia. (a) An origi-
nal photo; (b) constructed models ren-
dered at nearly the same viewpoint; (c)the
model rendered at a new viewpoint.
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