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Abstract. Subdivision is a convenient tool to construct objective curves and  
surfaces directly from given scattered points. Stationary p-subdivision schemes 
are highly efficient in the acquisitions of curve/surface points in shape modeling. 
The features of supported set of nonnegative mask of uniform convergent sta-
tionary subdivision schemes are important to their theoretic researches and ap-
plications. According to the properties of supported set of the nonnegative mask, 
a sufficient condition for uniform convergence of stationary p-subdivision 
scheme is presented. This condition is proved with two propositions and spline 
function. The contribution of this work is that the convergence of a stationary  
p-subdivision scheme can be judged directly. This direct judge is in favor of ap-
plications of this scheme. 

Keywords: geometric modeling, stationary p-subdivision, uniform conver-
gence, contractility, spline function. 

1   Introduction 

Stationary subdivision schemes arise from modeling and interrogation of curves and 
surfaces, image decomposition and reconstruction, and the problems of constructing 
compact supported wavelet basis etc. [1, 9]. These schemes are being developed in 
geometric modeling with great potentiality in CAD/CAM, computer graphics, image 
processing, etc. [1-11, 14, 15]. Stationary subdivision schemes are widely used in 
mechanical CAD, garment CAD, jewellery CAD, and applied in computer graphics. 
They also play important roles in image coding, signal processing, and the construc-
tion of basis function of compact supported orthogonal wavelets by using multiresolu-
tion analysis [1-3, 17-23]. They are also important in fractal and its generation by 
computer in particularly [1, 2, 4, 12]. Stationary subdivision schemes are used to 
construct the required curves and surfaces from scattered data directly through stated 
subdivision rules. Moreover the theoretical contribution of this approach consists in 
their tight combination of three research disciplines: spline functions, wavelets and 
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fractals [1-4, 9, 10, 12]. Therefore, the research of stationary subdivision schemes, 
especially its convergence, is significant in theoretical research and shape modeling 
[2, 3, 5-13]. The idea and approaches of stationary subdivision schemes are still effec-
tive in subdivision surfaces [24, 25,26] and the constructions of compactly supported 
orthogonal wavelets basis and fractal [11, 12, 13, 16, 24]. 

The systematic development of the basic mathematical principles and concepts as-
sociated with stationary 2-subdivision schemes is presented in [1]. The structure of 
these algorithms in a multidimensional setting and convergence issue are researched 
systematically. The complete theoretical system is constructed. The analytic structure 
of limit curves and surfaces generated by these algorithms is revealed [1, 16]. 

The extension of stationary 2-subdivision to stationary p-subdivision scheme is 
presented in [9]. Some properties of convergence of such schemes are described 
through Fourier analysis, functional analysis and spline function. A sufficient condi-
tion of the uniform convergence of the stationary p-subdivision scheme is discovered 
in [10] through a special polygon, δ-control polygon. 

The problem is important of how to use this kind of subdivision schemes to gener-
ate curves and surfaces in computer graphics [1-8, 18-21]. The convergence of sta-
tionary subdivision schemes is a key problem in the theory of stationary subdivision 
scheme and their applications [1, 9, 10]. Finding the features of the support set of 

nonnegative mask }:{ sa Za ∈= αα  [1, 9, 10] has an important value in theoretical 

researches and practical applications, because the convergence of these algorithms 
can be judged directly in the construction of curves and surface. So, the sufficient 
conditions of the uniform convergence of stationary p-subdivision schemes based on 
the supported set of mask may promote theoretical researches and practical applica-
tions [1, 9, 10]. 

A sufficient condition of the uniform convergence of stationary p-subdivision 
schemes is presented in this paper using contractility and spline function. This work is 
based on three aspects: the nonnegative mask and its support set of stationary p-
subdivision schemes, some definitions and properties of stationary p-subdivision 
schemes presented in [9, 10], and the works of [1-5]. 

Here is the main theorem of this paper. 

Theorem. The stationary p-subdivision scheme 
L,2,1,, 10 === − mS mm λλλλ  

defined in (2) is uniformly convergent, if the positive mask }:{ sa Za ∈= αα  sup-

ported on Ω  satisfies 
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2   Preliminaries and Propositions 

Six definitions and two propositions are introduced in order to prove of above  
theorem. 



 A Sufficient Condition for Uniform Convergence 721 

Definition 1. Let s be a fixed natural number and sZ  the integer lattice, and 

}:{ sa Za ∈= αα  be the fixed real scalar sequences having finitely supported set 

suppa= }0:{ ≠αα a . A stationary p-subdivision operator S is defined as 

)()(: ssS ZZ ∞∞ → ll                                                        (1) 

by 
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Z
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β
ββαα , 

where 1>p  is a fixed natural number, and λ  is point sequence. 

Definition 2. Let S be any stationary p-subdivision operator defined in (1), the follow-
ing iteration scheme 

L,2,1,, 10 === − mS mm λλλλ                                  (2) 

is defined as a stationary p-subdivision scheme. }:{ sa Za ∈= αα  is referred to as the 

mask of the stationary p-subdivision scheme S. λ  is called as the control polygon of 
S. In fact, αλ is a vertex of the control polygon λ . 

Definition 3. The stationary p-subdivision scheme (2) is said to be convergent for 

)( sZ∞∈ lλ  if there exists a continuous function )(0 sf RC∈λ ，such that 

0)(lim =−•

∞
∞→

m
mm p

f λλ .                                          (3) 

Definition 4. The p-subdivision scheme (2) is said to be uniformly convergent if there 

exists a continuous function )(0 sf RC∈λ  for all )( sZ∞∈ lλ , such that 

0)(lim =−•

∞
∞→

m
mm p

f λλ .                                         (4) 

Stationary p-subdivision algorithms (1) actually have sp different subdivision 

rules, and the norm is defined as α
α

λλ
sZ∈

∞ = sup  in )( sZ∞l  in the above definitions. 

The control polygon λ  is represented as scalar-valued, i.e. )( sZ∞∈ lλ , in this paper, 

since the influence on λ  of stationary p-subdivision scheme S in (1) and (2) is per-
formed as that of coordinate components of vertices. 

The basic difference of stationary p-subdivision schemes and stationary 2-

subdivision schemes is that stationary p-subdivision schemes have sp  different rules 

while stationary 2-subdivision schemes have s2  different rules. If p>2 and the two 
kind of stationary subdivision schemes in (2) are convergent, stationary p-subdivision 
schemes can be used to generate curves or surfaces by with fewer iterative steps than 
stationary 2-subdivision schemes, so stationary p- subdivision schemes are subdivi-
sion schemes having a faster convergence speed and a higher efficiency in 
curve/surface modeling. 
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Stationary p-subdivision schemes and their some basic convergent properties are 
presented in [9]. A sufficient condition for uniform convergence of stationary p-
subdivision schemes is given in [10] by using a special control polygon of δ-control 
polygon. 

Ul }0{)(: +∞ → RZsD  is thought as a no-trivial non-negative functional in the fol-

lowing description. 

Definition 5. A stationary p-subdivision operator S is said to be contractive relative to 
D if there exists a constant number γ (0<γ<1) for the subdivision operator S defined 
by (1), such that 

)(,)()( sDSD Z∞∈≤ lλλγλ .                                      (5) 

Suppose sR∈μ  is a fixed vector not necessarily a lattice point, and 

I
sp ZΓa )(:sup +=Ω⊆ μ , where sRΓ ⊆  be a balanced convex closed set which 

corresponding Minkowski functional is ρ , then Γ∈y  if and only if 1)( ≤yρ .  

Definition 6. For any control polygon )( sZ∞∈lλ ,  

βα

βα
βαρ
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sup:)(                                           (6) 

is defined as a diameter of λ . 
The convergent condition of stationary p-subdivision scheme will be discussed in 

the following under the condition of that the support of mask }:{ sa Za ∈= αα  is the 

union of sZ  and a special zonotope ]},[:{:)(
1

i
s

i
i uluAuA ∏∈=

=
Z , where A  is a ss ×  

integer matrix, and 1det −=A . The following two propositions are used to prove the 
main theorem. 

Proposition 1. Let }:{ sa Za ∈= αα  be any mask satisfying following conditions: 

Ω∈≠ αα impliesa ,0 ,                                              (7) 

s
p fora
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and )(λρD  be functional defined by (6) on )( sZ∞l . Then stationary p-subdivision 

operator S defined by (1) satisfies: 

)()( λγλ ρρ DSD ≤ ,                                          (9) 

Where    
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∈

−−
<− s
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2

1
.                              (10) 

Lack of space forbids the proof of this proposition here. 
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Proposition 2. Under the following three conditions 
(i) B be a p-subdivision operator which has finitely supported mask 

}:{ sb Zb ∈= αα  and stable refinable function ψ , and the corresponding stationary 

p-subdivision scheme is uniform convergent: ∑=
∈

−
s

pbB
Zβ

ββαα λλ :)( . Where ψ  is a 

stable refinable function means that for refinable function ψ  there exists a positive 

constant 01 >C  such that 

∞
∞∈

∞ ≤∑ −•≤ λαψλλ
α

α 121 )( CC
sZ

,                              (11) 

Where 
∞∈

∑ −•=
s

C
Zα

αψ )(:2 . 

(ii) Stationary p-subdivision operator S defined by (1) is contractive relative to 
functional D.  

(iii) There exists a constant C, such that  

)(,)( sDCBS Z∞
∞ ∈⋅≤− lλλλλ .                              (12) 

The following two conclusions can be obtained  
(a) The stationary p-subdivision scheme determined by S is uniformly convergent. 
(b) If the condition (11) is replaced by the following condition that there exist a 

constant C such that  
o)(sup,)( ψαβλλλ βα pDC ∈−⋅≤− ,                            (13) 

the stationary p-subdivision scheme determined by S is also uniformly convergent.  

Proof: For the definitions in (1) and (2), we can obtain that [10]  
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If define mfλ  as follows 
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the conclusion of proposition 2 can be proved with following inequality [10] 

mmm
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ff
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The detailed proof of this proposition is omitted here. 

3   The Proof of the Main Theorem 

Now we give the proof of theorem presented in this paper on the base of the proposi-
tion 1 and proposition 2. In the proof, above definition of contractility and spline 
function will be used. 
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Proof: (i) Let sA IZZ )(:=Ω , then it is a hyperrectangle according to the definition 

of )(AZ . So we can suppose that ]},[:{:)( 1

1

1
i

s

i
i uluAuA ∏∈=

=
Z . Then according to the 

hypothesis of that Ω  is the support of mask a , we know that: 

siupplaa iiiiiipp ,,2,1,,0, 11 L=≤−−≤⇔>−− βδβσβδβσ             (15) 

So, if let  
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and Γ is the set determined by Minkowski functional )(xρ , as a result , we know that 

I
sZΓ)( +=Ω μ  from the definition of μ  and Γ , so 0>αa  if and only if 

I
sZΓ)( +=Ω∈ μα .  

Moreover, the mask }:{ sa Za ∈= αα  satisfies (8) because of known conditions. 

So, for )( λρ SD  defined with (6), we conclude that )()( λγλ ρρ DSD ≤  according to 

proposition 1. Thus from that )( sa Z∈αα  is positive on Ω , it follows that 
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Therefore, if find a β  satisfying (15) whenever iiii lulu −=−<− 11
11 δσ . Then 

for such β  βδβσβδβσ pppp aaaa −−−− +<−  is true. Thus 1<ργ . 

(ii)  To determine the β  satisfying above requirement in the following. 

From the inequalities in (15) above, it may be known that in order to make the 
0,0 >> −− βδβσ pp aa  true the subscripts βδβσ pp −− ,  should satisfy: 

1111 , uplupl ≤−≤≤−≤ βδβσ .                                   (16) 

So the expression 11 lu −<− δσ is true since silu iiii ,,2,1,11 L=−<−δσ . So 
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≤≤ ii
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Without loss of generality, let δσ > , then 110 lu −<−≤ δσ , and so 
11 lu −<− δσ . Now to solve the βp  from the expression (16), the result 

11 lpu −≤≤− δβσ is obtained. Therefore there always exists a integer in interval 

],[ 11 lu −− δσ , so that this integer is βp , so the β  can be find out according to the 

each coordinate component, and such sZ∈β  is satisfies all the inequalities (15). 

Therefore the operator S has following property known from the conclusion (i): 

)()( λγλ ρρ DSD ≤ , and 10 << ργ . 
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(iii) To construct an operator B defined in (1), which has finite support 

}:{ sb Zb ∈= αα  and refinable function ψ , and the B makes the corresponding 

stationary p-subdivision scheme be uniform convergent and satisfying (13). 

Firstly, let )(1 tϕ  is a B-spline function of degree one: 
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then the ϕ  satisfies the p-scale equation: .,)()( sxpxbx
s

R
Z

∈∑ −=
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Now select ),,,( 21 sηηηη L= , such that siul iii ,,2,1, L=<<η , and let 

)()( ηϕψ −= xx , then ab pp supsup ⊆ , and mask b  is associated to ψ .  
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where C is an arbitrary constant, B is determined by mask }:{ sb Zb ∈= αα .  

For sZ∈∀β , we can chosen proper C, to make )(2
1 λλβ DC ≤−  true. So,  

s
pp DbaCBS

s
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β
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The hypothesis conditions in proposition 2 are all true as shown in expressions 
(17), (18), and (19). Thus the theorem is true. 
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