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ABSTRACT

Dynamical shape priors are curical for level set-based non-

rigid object tracking with noise, occlusions or background

clutter. In this paper, we propose a level set tracking frame-

work using dynamical shape priors to capture contours

changes of an object in a periodic action sequence. The

framework consists of two stages— off-line training and

on-line tracking. During the off-line training stage, a graph-

based dominant set clustering (DSC) method is applied to

learn a shape codebook with each codeword representing a

certain shape mode. Then a codeword transition matrix is

learnt to characterize the temporal correlations of contours

of an object. During the on-line tracking stage, we fuse

the knowledge of shape priors and current observations, and

adopt maximum a posteriori (MAP) estimation to predict the

current shape mode. The experimental results on synthetic

and real video sequences demonstrate the effectiveness of our

method.

Index Terms— Tracking, level set, markov model, dy-

namical shape priors

1. INTRODUCTION

Level set-based methods are very popular in dealing with

many computer vision tasks such as object detection, image

segmentation and tracking [1] [2] [3]. In the case of noise,

partial occlusions and background clutter, low-level appear-

ance features (color, texture, etc.) are inadequate to perform

the above tasks. Thus, some high-level prior knowledge about

the shape of objects is necessary to be integrated into the level

set evolution framework.

In recent years, there are lots of work on modeling shape

priors in a level set framework [2] [4] [5]. Leventon et

al. [4] incorporate the shape information into the image seg-

mentation process. A Gaussian model is constructed in the

low-dimensional shape subspace. Due to the little variation in

shape when dealing with medical imagery segmentation task,

the static shape model tackles this task well. Paragios and

Rousson [2] propose another pixel-wise static shape model

in which a Gaussian density funcion is described at each grid

location. However, the aforementioned static shape models

Fig. 1. Flowchart of our method

can’t be updated on-line, resulting in the failures of adapta-

tion to new shapes. Active shape models (ASMs) proposed

by Cootes et al. [6] are often used to model different aspects

of rigid objects in a shape prior formalism. Fussenegger et

al. [7] employ a partially learned ASM (only finite samples

are used in the training step) to perform segmentation, and

then the segmentation results are utilized to update the ASM

with an incremental Principal Component Analysis (IPCA)

algorithm. With respect to the tracking problem, especially

for the nonrigid objects with continuous and large shape

changes, a dynamical shape model considering the tempo-

ral correlations is imperative. Cremers [5] proposes a linear

dynamical shape model for level set-based tracking. The tem-

poral evolution of the eigenmodes of the level set function

is approximated by an autogressive model. In the model, a

particular shape at the current time instance is reconstructed

by the shapes observed at previous time instances.

In our method, we propose a markov model-based dynam-

ical shape model. Unlike the dynamical shape model [5]based

on data fitting process and without data understanding, our

shape model is a high level understanding of shape knowl-

edge. Our tracking framework consists of two stages: off-

line training and on-line tracking. During the off-line shape

model training stage, a dominant set-based clustering (DSC)

method [8] is used to obtain the dominant shape modes of

a periodic action sequence. Each mode is viewed as a code-

word and the codeword transition matrix encoding the markov

property is computed by counting the times for any code-

word transition pair between adjacent frames. Then, for each

shape mode, a Gaussian model is constructed at each grid lo-
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cation. During the on-line tracking stage, three main steps

are needed. Firstly, the initial contour is evolved only with

the color feature; secondly, the obtained result and the con-

structed shape priors are fused to predict the current shape

mode; thirdly, the contour is continuously evolved with the

shape constraint and the final result is returned to update the

shape model. Fig.1 shows the flowchart of our method.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the off-line training process of the shape prior

model. The on-line tracking process is introduced in Section

3. Experimental results are given in Section 4. The last sec-

tion concludes the paper.

2. OFF-LINE SHAPE MODEL TRAINING

Within this stage, the shape model is constructed using a set

of aligned training contours. In our method, contours are rep-

resented by the level set method [9] which embeds the shape

information in the signed distance map represented by Φ. We

define the sign of the interior point as negative and vice versa.

The similarity between any two contour samples (Φi, Φj) is

computed as:

Sim(Φi,Φj) = e
− d(Φi,Φj)2

β2 (1)

d(Φi, Φj)=min
{∑

x,y |Ha(Φi(x, y)) − Ha(Φj(A(x, y)))|;∑
x,y |Ha(Φj(x, y)) − Ha(Φi(Ã(x, y)))|

}

where | · | is the absolute value operator, A and Ã are the

optimal afffine transformation parameters for shape regis-

tration [10]: Φi
A−→ Φj , Φj

Ã−→ Φi, β is a constant, and

Ha(Φ(x, y)) is a Heaviside function:

Ha(Φ(x, y)) =
{

0 Φ(x, y) ≥ 0
1 Φ(x, y) < 0 (2)

After computing the similarity matrix of contour samples,

a DSC method [8] (a novel graph-based clustering method

adopting an iterative bipartition strategy) is used to discover

the typical shape modes. Each mode represents a certain

kind of similar shapes. For convenience, we call each mode

a shape codeword. Thus, all samples are mapped by DSC

method into their corresponding shape codewords which form

a shape codebook. Then, a codeword transition matrix is used

for modeling the temporal correlations of shape changes in

a periodic action sequence. Each element of the codeword

transition matrix is computed by counting the times for any

codeword transition pair between adjacent frames.

For each shape mode, a Gaussian model is constructed at

each grid location [2]. Compared with the global shape sub-

space model [4], this shape model accounts for local varia-

tions. The Gaussian probability density function (pdf) at pixel

(x, y) in the shape model is formulated as:

pM
x,y(Φ) =

1√
2πσM (x, y)

e
− (Φ−ΦM (x,y))2

2σ2
M

(x,y) (3)

where ΦM (x, y) and σM (x, y) are the mean shape map and

the variance of shape deformations respectively.

3. ON-LINE TRACKING

The on-line tracking consists of three main steps: contour

evolution based on the color feature, the current shape mode

prediction and contour evolution with the shape constraint.

3.1. Contour evolution with the color feature

The method we adopt in this step is a region-based active con-

tours method, modeling the features of both object and back-

ground regions in the level set speed model. In our method,

we train a color Gaussian Mixture Model (GMM) in object

and background regions respectively. The HSV color space is

chosen in this model.

The data energy function is formulated based on the seg-

mentation idea similar to [3]. The key factor in this process is

to find the optimal partition operator represented by a contour

between the object region and the background region. The

data energy function Edata is defined as follows:

Edata ≈ −
∫∫

xi∈Rin

log P (xi|θin)dxi −
∫∫

xj∈Rout

log P (xj |θout)dxj

(4)

where Rin and Rout denote respectively the regions inside

and outside the object contour, θin is the parameters of the

object GMM and P (xi|θin) is the Gaussian likelihood func-

tion of pixel xi. P (xi|θout) and θout are defined by analogy.

Minimizing the above energy function by solving the cor-

related Euler-Lagrange equations [3], we obtain the level set

speed model in which a (2l + 1) × (2l + 1) square neighbor-

ing subregion around the center pixel is defined. The object

and the background posterior probabilities which we denote

by PRin
(Ix̃) and PRout

(Ix̃) are also calculated in the speed

model with the assumption that they have the same prior prob-

abilities:

PRin(Ix̃) = P (x̃|θin)/[P (x̃|θin) + P (x̃|θout)] (5)

PRout
(Ix̃) = P (x̃|θout)/[P (x̃|θin) + P (x̃|θout)] (6)

The level set speed model of each pixel (x, y) is obtained by:

Fx,y = −
l∑

i=−l

l∑
j=−l

log PRin
(Ix̃)Ha(Φ(x̃, t)) (7)

+
l∑

i=−l

l∑
j=−l

log PRout
(Ix̃)(1 − Ha(Φ(x̃, t)))

where x̃ is the neighboring pixels of the center pixel (x, y):
x̃ = (x + i, y +j) and Ha(Φ) is a Heaviside function (2).

The initial contour is evolved to the desired boundary by

modifying Φ iteratively with the speed Fx,y in the normal di-

rection:
∂Φ
∂t

+ Fx,y · |∇Φ| = 0 (8)
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We let Φc denote the evolution result obtained only with the

color feature.

3.2. Shape mode prediction

In this step, the result obtained only considering the color fea-

ture and the constructed shape priors are fused to predict the

current shape mode. This prediction problem can be mod-

eled as a MAP one. We let the posterior probability of pre-

diction of current shape mode St given the current observa-

tions Ot and previous shape modes S1:t−1 be represented by

P (St|Ot, S1:t−1). Thereby, the optimal current shape mode

S∗
t should satisfy:

S∗
t = arg max

St

P (St|Ot, S1:t−1) (9)

In accordance with the Bayesian formula, this posterior prob-

ability is equal to:

P (St|Ot, S1:t−1) =
P (Ot|St, S1:t−1)P (St|S1:t−1)

P (Ot|S1:t−1)
(10)

We assume Ot and S1:t−1 are uncorrelated and P (St|S1:t−1)
follows the first order markov property, (10) is further simpli-

fied as:

P (St|Ot, S1:t−1) ∝ P (St|St−1)P (Ot|St) (11)

where P (St|St−1) reflecting the temporal relations of shape

modes is obtained from the codeword transition matrix in Sec-

tion 2, and P (Ot|St) is the likelihood function which esti-

mates the similarity between the predicted shape mode and

the current observations. We use Sim(Φc,ΦM )(1) to approxi-

mate P (Ot|St). Φc is the result obtained in the last step and

ΦM is the mean shape map associated with St.

3.3. Contour evolution with the shape constraint

After the optimal current shape mode S∗
t (9) is obtained, the

shape Gaussian model of this shape mode is chosen as the

shape constraint with which the contour is evolved continu-

ously. The level set speed function with shape priors is for-

mulated:

Fshape =
(Φ(x, y) − ΦM (A(x, y)))2

σM (A(x, y))2
+ log σM (A(x, y))

(12)

where A is the affine parameter for shape registration, ΦM

and σM are the Gaussian parameters of the shape model.

The contour is evolved to the final boundary with the over-

all speed F (F = Fcurv + Fshape) in the normal direction:

∂Φ
∂t

= (Fcurv + Fshape) · |∇Φ| (13)

where Fcurv = εκ(x, y) is the internal force proportional to

the curvature κ(x, y) of the contour, it has a smoothness ef-

fect on the contour. The initial value of Φ for this iteration

equation is Φc obtained in Section 3.1. After a number of

iterations, the final evolution result is returned to update the

shape model of its shape mode.

Fig. 2. Illustration of the shape model training: (a)The mean

shapes of discovered six shape modes; (b) the codeword tran-

sition matrix

4. EXPERIMENTS

To verify the effectiveness of our method, we have performed

experiments on synthetic and real video sequences. In the

experiments, we track the contours of a walking person un-

der some difficult cases, such as noise, partial occlusions and

background clutter. A tracked object is represented with a

white contour. At the shape model training stage, for each

sequence, a set of hand-segmented contours of each walk-

ing person are used as the training samples. Through a DSC

method, several dominant shape modes are discovered. For

each shape mode, a Gaussian model is constructed at each

grid location. The parameter β in (1) is set to be 8000. l in

(7) is independent of sequences and is fixed to 2.

The first sequence is an outdoor human walking sequence.

The forepart of this sequence is used to train the shape model

and the latter part is the testing sequence. During the off-line

training stage, the mean shape maps of discovered six modes

with respect to this sequence are shown in Fig.2(a). The six

modes are typical and representative during a periodic walk-

ing sequence. The codeword transition matrix is shown in

Fig.2(b). We test our method under two conditions. The first

condition is the image is disturbed by the salt&pepper noise.

The second condition is the person is partially occluded by

a red ellipse whose position is generated randomly around

the tracking person. The final tracking results are illustrated

in Fig.3. We can find for both the noise condition (Fig.3(a))

and partial occlusions condition (Fig.3(b)), our method keeps

good track of the contours of the walking person. There-

fore, the dynamical shape model is effective for recovering

the missing parts of the tracked objects.

The second sequence is an indoor human walking se-

quence with mobile camera. The background is cluttered

up with some stuffs which have the similar color as the ob-

ject. Nine dominant shape modes are discovered by the DSC

method and the codeword transition matrix is calculated sim-

ilar to our first experiment. The tracking results are shown in

Fig.4. Through the results only considering the color feature

(Fig.4(a)), we can find the color feature is sensitive to the

background disturbance. Compared with this condition, the

tracking results fusing the color feature and the shape priors

are robust to background disturbance (Fig.4(b)). Therefore,
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Fig. 3. Tracking results of synthetic sequence: (a) noise condition; (b) partial occlusions condition

Fig. 4. Tracking results of real sequence: (a) tracking results only considering the color feature; (b) tracking results fusing color

feature and dynamical shape priors

the consecutive shape changes are well modeled by our dy-

namical shape model.

5. CONCLUSIONS

We have proposed a markov model-based dynamical shape

priors model in the level set tracking framework. The shape

model encodes the temporal correlations of contours in a pe-

riodic action sequence and is a high-level understanding of

shape knowledge. During the shape model construction pro-

cess, a DSC method is used to discover the typical shape

modes, the transition matrix among them is calculated to char-

acterize the temporal correlations. During the tracking pro-

cess, shape priors and the result only evolved with the color

feature are fused to predict the current shape mode. With the

help of shape priors, the contour is evolved to enclose the ob-

ject correctly. The results presented have shown the effective

tracking performance with noise, occlusions and background

clutter.
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