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Abstract

Enormous accessible broadcast soccer videos de-
mand an efficient ball and player trajectory extraction
framework to represent the tactic semantics for the au-
tomatic analysis. Camera motions, noise and blurs in
broadcast videos make it difficult to extract the trajec-
tories with a single existing object tracking algorithm.
In this paper, we propose a novel framework for ball
and player trajectory extraction in broadcast soccer
videos. The framework generates candidate ball trajec-
tories and player trajectory segments, then it searches
the optimal ball trajectory with the likelihood ranking
and refines player trajectories with MCMC data associ-
ation. Instead of extracting ball and player trajectories
respectively, our framework employs the motion rela-
tionship of the ball and players to build a collaborate
scheme to improve the tracking and trajectory refine-
ment results. The experimental results show the pro-
posed framework is more effective than previous works.

1. Introduction

Tremendous broadcast soccer videos on the Inter-
net demand an automatic semantic representation for
event and tactic analysis. Trajectories of the ball and
players include the temporal and spacial information of
the main objects in the game, which makes them the
best feature for semantic representation. However, the
broadcast video’s low resolution, motion blur and noise
bring challenges to the trajectory extraction.

Some related works on trajectory extraction have
been done in ball games. Scaramuzza[1], Ren[2] and
Misu[3], all proposed schemes and frameworks to ob-
tain ball and player trajectories in soccer videos. Un-
fortunately, these algorithms rely on the camera mod-

Figure 1. The framework of ball and player
trajectory extraction.

els which is inaccessible for broadcast video analysis.
To deal with the noisy and informal broadcast video,
Tong[4] claimed a non-ball elimination algorithm for
ball detection in soccer videos. Zhu[5] detected the
ball and players with the support vector classifier and
tracked them with the support vector regression particle
filter. In [6], graph model was employed to select the
optimal player and ball trajectory segment and generate
components of the aggregate trajectory, but the relation-
ship between the movement of the ball and players were
not involved.

In this paper, we propose a novel collaborative ball
and player trajectory extraction framework for broad-
cast soccer videos. Unlike existing works which track
the ball and players respectively, the algorithm pro-
posed in this paper integrates them together for a col-



laborate trajectory extraction. Fig. 1 illustrates the
framework of the trajectory extraction in broadcast soc-
cer videos. To represent the raw trajectories, long shots
are segmented into temporal intervals. In each of the
interval, detection and tracking algorithms are devel-
oped to generate the raw ball and player trajectories.
A new candidate ball ranking technology is employed
to find the optimal ball trajectory. With the temporal
and spacial MCMC data association, segments of raw
player trajectories are selected and connected to refine
the aggregate trajectories. The motion relationship of
the ball and players are considered in the ball track-
ing and player trajectory refinement. The refinement
reduces occlusions and false alarms in the trajectory.

The rest of the paper is organized as follows. Ball
and player trajectory extractions are discussed in sec-
tion 2 and 3 respectively. Experiments are shown in
section 4 for performance evaluation. Finally, the paper
is concluded in section 5.

2. Ball trajectory extraction

2.1. Ball detection and tracking

The ball detection algorithm generates several can-
didate balls in the frame by removing non-ball objects.
The model of non-balls includes features of the size,
color, shape and position.

All the candidate balls detected are accepted as the
initialization of the tracking algorithm. We employ
SVR particle filters[5] with first-order linear motion
model to track these candidates. Making the decision
on whether the candidate is a ball is delayed until after
the tracking.

2.2. Candidate trajectory ranking

After the generation of the candidate ball trajecto-
ries, a decision scheme is required to select the optimal
ball trajectory among these candidates. We introduce
the ball trajectory likelihood to find the best trajectory
for the ball. The ranking procedure is performed si-
multaneously with the tracking. Each time the tracking
algorithm extends the trajectories, we update the like-
lihoods of all candidate trajectories. This can help us
stop tracking and discard the candidates with low likeli-
hoods. The tracking ends up with all candidates’ likeli-
hood falling below a predefined threshold. We select the
trajectory with the highest likelihood as the extracted
ball trajectory of the time interval. The Adaboost algo-
rithm is employed to learn the ball trajectory likelihood
with the five features of ball position, velocity, accelera-

tion, trajectory length and distance between the ball and
the nearest player.

The distance between the ball and the nearest player
is a feature of position relationship of the ball and play-
ers. The ball tracking results are often affected by sur-
rounding players. False alarms most likely appear be-
side players as a part of the body. The distance indicates
the confidence of the tracking results. Small distances
between the ball and player imply low confidence of the
tracking results.

The ball trajectory and non-ball trajectory are la-
beled with 1 and 0 in the training dataset respectively.
For each of these features, a weak learner determines a
threshold for the classification with the training dataset
of 1000 frames. The output of the Adaboost H(x) =∑5

i=1 αihi lies in [0, 1], which is defined as the ball
trajectory likelihood. We set the accept threshold of the
ball trajectory as 0.5 to stop tracking and discard the
candidates with low likelihoods.

3. Player trajectory extraction

3.1. Player detection and tracking

For player trajectory extraction, long shots are seg-
mented into equal intervals. In the first frame of the
temporal interval, players are detected for tracking ini-
tialization. In long shots, fields are extracted with the
dominant color and contours of objects in the field are
derived with the background substraction. The contours
are detected as players according to the scale and shape.
In broadcast soccer videos, player contours are merged
and connected which significantly affects the precision
of the player detection. In order to reduce the merge of
players, the dominant player scale is introduced to de-
termine whether the detected contours should be split.
The dominant player scale is learnt from the scale his-
togram of contours in the field. The most frequent scale
is selected as the dominant scale of players. We split
the contour if its scale is 20% larger than the dominant
scale, which can effectively reduce the merge.

For each of the detected players in the first frame of
the interval, a particle filter tracker is assigned. The pos-
terior p(xt|zt) is presented by random samples of the
posterior distribution, where xt and zt are the state and
observation of the ball at time t. The posterior density
is presented by:

p(xt|z1:t) =
N∑

i=1

wi
tδ(xt − xi

t) (1)

where δ() is the Dirac delta function. The weights are



updated by:

wt = wt−1
p(zt|xt)p(xt|xt−1)
q(xt|x0:t−1, z0:t)

(2)

Taking the proposal distribution q(xt|x0:t−1, z0:t) =
p(xt|xt−1), the equation is reduced to wt =
wt−1p(zt|xt).

p(zt|xt) = p(z1t|xt)p(z2t|xt) where p(z1t|xt)
is presented by the Bhattacharyya distance between
the histograms of the target and the initial template.
p(z2t|xt) = 1√

2πσ
exp(− θ2

2σ2 ), where θ ∈ [−π, π] is
the angle between the ball’s and the player’s moving
direction. We utilize the consistency of the ball and
player’s moving direction to model their motion rela-
tionship for the collaborate tracking.

p(xt|xt−1) is derived by the first-order linear motion
model:

xt = Axt−1 + v (3)

where v is the Gaussian white noise.
We resample the state with sampling importance re-

sampling strategy to avoid the effect of degeneracy. Af-
ter normalizing the weights [w1

t , w2
t , . . . , wN

t ], we gen-
erate a new distribution of the samples and resample
from it.

3.2. Player trajectory association

Occlusions of players and false alarms make one tra-
jectory segment in the interval not correspond to one
player. Player trajectories in temporal intervals derived
above require data association for the aggregate trajec-
tory extraction. Player trajectory extraction is formu-
lated as a probabilistic problem of multiple hypotheses
estimation and temporal trajectory segment structure
analysis. Temporal and spacial MCMC is employed for
the player trajectory refinement.

We define the trajectories in time intervals [1, T ] as
ω = {ω0, ω1, . . . , ωk} where ω0 is the false alarm and
ωk is the kth trajectory. The likelihoods of the trajec-
tories are described with the objects’ motion, color, the
trajectories’ length and overlap. With the motion equa-
tion in Equ. 3, the motion likelihood is presented as fol-
lows:

LMotion(ωk(tfi+1)|ωk(tli)) =
1

2π|Σ| 12 exp(−1
2
eT
i Σ−1ei)

(4)
where ωk(tfi ) and ωk(tli) denote the first and last node
in the ti interval of the kth trajectory. ei = ωk(tli+1)−
ω̄k(tli+1), where ωk(tli+1) and ω̄k(tli+1) denote the prior
and posterior estimates.

The color likelihood of the trajectory is defined as:

LColor(ωk(tfi+1)|ωk(tli)) = exp(−λD(ωk(tfi+1), ωk(tli)))
(5)

where D(·) is the Bhattacharyya distance of histograms.
Long trajectories with less overlaps are preferred

by our refinement algorithm. We define the trajectory
length prior as:

p(Length) =
K∏

k=1

C1 exp(−len(ωk)) (6)

where len(·) is the number of intervals in the trajectory.
The spacial overlap between two trajectories is rep-

resented as:

p(Overlap) = C2 exp(−
∑

i,j,i6=j

∑T
t=0 I(ωi(t) = ωj(t))∑K
k=1 len(ωk)

)

(7)
where I(·) is the indicate function.

Combining the above priors and likelihoods, we have
the whole posterior in Equ. 8.

p(ω|Y ) ∝ LMotion · LColor · p(Length) · p(Overlap)
(8)

where Y is the observation.
Metropolis-Hastings sampling is utilized for the

MCMC trajectory association[7][8]. In order to ac-
celerate the convergence, we initialize the state of the
chain with the results of the deterministic trajectory
association[6]. Two spacial and three temporal moves
are defined to compute the state change probability.

The spacial moves include segmentation and aggre-
gation.

Segmentation: If more than one trajectory’s predic-
tion wk(t) is overlapped at time interval t, the over-
lapped part of the trajectory is a candidate for a seg-
mentation move. We randomly select such a candidate
and generate the same trajectory segment as the can-
didate for all trajectories including the candidate. The
probability of the move is qseg = 1

Cs
ps, where Cs is the

candidate number (similar as the following Ca, Cm and
Csw), and ps is the prior of the spacial move.

Aggregation: If one trajectory has more than one
possible following interval segment at time t, we ran-
domly select a candidate and merge the interval seg-
ments to form a new trajectory with the probability
qagg = Caps.

Three temporal moves are defined as follows.
Merge: If a trajectory’s end interval node is close

enough to another trajectory’s start node, these two tra-
jectories are a pair of candidate for a merge move with
the probability qmer = 1

Cm
pt, where pt is the prior of

temporal move.



Figure 2. Trajectory extraction in the long
shot.

Split: We select a trajectory ωk uniformly
at random and select a break point on the tra-
jectory according to the probability spk(i) =

− log LMotion(ωk(tf
i+1)|ωk(tl

i))∑len(ωk)

i=1
− log LMotion(ωk(tf

i+1)|ωk(tl
i
))

. The nodes after

the break point are moved to a new trajectory with the
probability qspl = 1

K spk(i)pt.
Switch: If there exists a common node ωk1(ti) =

ωk2(ti) in two trajectories ωk1 and ωk2 , the node is a
candidate for a switch move. We randomly select a
candidate and switch the nodes after the candidate node
with the probability qswi = 1

Csw
pt.

4. Experimental results

The test has been conducted on the videos of the
Soccer World Cup 2006. The videos are compressed in
MPEG-4 with the frame rate of 25fps and the resolution
of 960×544. Parameters are experimentally set as Σ =
I, σ = 1, λ = 0.1, C1 = 10−5, C2 = 1, ps = pt = 0.3.
The results of the ball and player trajectory extraction
algorithm are listed in Table 1. Seven detected long
shots in the video with the total number of 1050 frames
are used as the test data of the trajectory extraction. We
compare the ball and player trajectories obtained by our
framework with the manually labeled groundtruth and
accept a ball or player position as a correct result if the
distance of the ball position between our algorithm and
the groundtruth is no more than 5 pixels. A comparison
with the algorithm in [6] is also carried out on the same
data. Fig. 2 illustrates the results of a sample shot. The
results show our framework is able to effectively ex-
tract ball and player trajectories with the collaboration
of ball and player motions in long shots of broadcast
soccer videos.

5. Conclusions

A new framework for collaborative ball and player
trajectory extraction is proposed in broadcast soccer

Table 1. Results of trajectory extraction

Sample
shots Balls Players

Correct
ball
position

Correct
Player
position

Ball
trajectory
precision

Player tra-
jectory pre-
cision

Ours method
in [6]

Ours method
in [6]

Ours method
in [6]

Ours method
in [6]

Shot1 150 1273 129 120 1130 1098 86.0% 80.0% 88.8% 86.3%
Shot2 150 1121 131 122 1110 997 87.3% 81.3% 99.0% 88.9%
Shot3 150 907 139 133 847 833 92.7% 88.7% 93.6% 91.8%
Shot4 150 835 140 135 768 768 93.3% 90.0% 92.0% 92.0%
Shot5 150 1079 135 127 973 955 90.0% 84.7% 90.2% 88.5%
Shot6 150 716 150 144 716 704 100% 96.0% 100% 98.3%
Shot7 150 804 141 137 745 685 94.0% 91.3% 92.7% 85.2%
Total 150 6735 965 918 6289 6040 91.9% 87.4% 93.4% 89.7%

video. Online detection and tracking and offline tra-
jectory refinement schemes are unified to overcome the
difficulties brought with the broadcast video. The re-
sults show the collaborate tracking, ball candidate tra-
jectory ranking and probability based trajectory associ-
ation efficiently improve the accuracy of the trajectory
extraction.
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