
Online Boosting Based Intrusion Detection in Changing
Environments

Yan-guo Wang
National Laboratory of Pattern

Recognition
Institute of Automation,

Chinese Academy of Sciences
100080 Beijing, China

ygwang@nlpr.ia.ac.cn

Weiming Hu
National Laboratory of Pattern

Recognition
Institute of Automation,

Chinese Academy of Sciences
100080 Beijing, China

wmhu@nlpr.ia.ac.cn

Xiaoqin Zhang
National Laboratory of Pattern

Recognition
Institute of Automation,

Chinese Academy of Sciences
100080 Beijing, China

xqzhang@nlpr.ia.ac.cn

ABSTRACT
Intrusion detection is an active research field in the develop-
ment of reliable web-based information systems, where many
artificial intelligence techniques are exploited to fit the spe-
cific application. Although some detection algorithms have
been developed, they lack the adaptability to the frequently
changing network environments, since they are mostly trained
in batch mode.

In this paper, we propose an online boosting based intrusion
detection method, which has the ability of efficient online
learning of new network intrusions. The detection can be
performed in real-time with high detection accuracy. Ex-
perimental results show the advantage of the method in the
intrusion detection application.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software (e.g.,
viruses, worms, Trojan horses), Unauthorized access (e.g.,
hacking, phreaking); C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring

General Terms
Security, Algorithms

Keywords
Intrusion detection, online boosting, pattern recognition

1. INTRODUCTION
With the increasing of network intrusions, information se-
curity becomes crucial in the development of web-based in-
formation systems, such as e-business and e-government. It
provides us a reliable environment for communication, in-
formation integrity and privacy protection. As the comple-
mentary measures of intrusion preventions such as user au-

thentication and encryption, intrusion detection techniques
attract more and more attention from researchers and engi-
neers.

Intrusion detection has been an active research field ever
since its first proposed by Denning [2] in 1987. It is an ef-
fective tool for protecting our systems against various types
of network attack. Generally, intrusion detection systems
(IDSs) can be classified into two categories: host-based IDSs
and network-based IDSs [10]. Host-based IDSs make use
of the system log of the target host machines, and some
rule-based detection algorithms can be derived. However,
it may be late when an intrusion is detected by host-based
IDSs, as damage to the system may have already occured.
Moreover, it is difficult for host-based IDSs to detect dis-
tributed network attacks that aim to consume the system re-
sources. Network-based IDSs perform detection at network
nodes such as switchers and rooters. They exploit the in-
formation of separate IP packages and detect packages that
are of potential harm to machines on the network. Within
the architecture of network-based IDSs, the detection bur-
den in the host machines is greatly lightened, and security
measurements can be taken before the attack reaches the
host machines. Furthermore, network-based IDSs are able
to detect distributed network attacks.

There are various ways of intrusion detection that have been
developed. A statistical method is proposed in [2], where
statistical profiles for normal behaviors are constructed and
used to detect anomalous behaviors as intrusions. Data min-
ing techniques are also widely used in intrusion detection
[13, 22]. The concepts of “association rules” and “frequent
episodes” are introduced into the intrusion detection task to
describe the network activities. In [15] a distributed out-
lier detection architecture is constructed to detect network
attacks.

Recently, methods in machine learning and pattern recog-
nition become popular in the intrusion detection research.
Various new algorithms are introduced and studied in IDSs.
For supervised learning, Bivens et al. [1] used neural net-
works for intrusion detection. Another algorithm with great
generalization ability, SVM, is also applied in [3, 7]. As
for unsupervised learning, an effective clustering tool, self-
organizing map, attracts great attention in [9, 11, 18]. There
are also many other pieces of work on this research field [12,

19].

Although many intrusion detection algorithms have been
developed, there are still some problems in practical uses.
First, there are many new intrusion types produced every
week. Most of existing algorithms have to retrain the whole
detector in order to detect the new types of attack, since
they are trained in batch mode. Second, the training data
set for intrusion detection is often very huge, so it becomes
impractical for frequently retraining the detector to adapt
to a dynamic environment. Third, the variety of attribute
of network data is also a difficult issue. There are various
types of attributes for network data, including both cate-
gorical and continuous ones. Furthermore, the value ranges
for different attributes differ greatly, from [0, 1] to [0, 107].
This brings more difficulties for many detection methods and
limits their performance.

In this paper, the online boosting algorithm proposed by Oza
[16] is applied into network-based intrusion detection. The
online learning framework provides the ability of quick adap-
tion to the changing environments. The carefully designed
strategies for training weak classifiers make the learning ef-
ficient, and produce great performance for the final ensem-
ble classifier. Experimental results show that the proposed
method quickly adapts to the changing environments, and
can perform real-time intrusion detection with high detec-
tion accuracy.

The rest of the paper is organized as follows. In Section 2
we introduce the online boosting based intrusion detection
algorithm, and provide its relation to the batch boosting
based detection scheme. In Section 3 some experimental
results are presented which show the advantage of the pro-
posed method. Then we draw the conclusions in the last
section.

2. ONLINE BOOSTING BASED INTRUSION
DETECTION

We begin with a formulation of the intrusion detection task.
After a brief introduction of the ideas of batch and online
boosting, we present our online boosting based intrusion de-
tection algorithm. Then an analysis of the computational
complexity is followed.

2.1 Problem Formulation
In the network-based IDSs, the training and detection are
performed at network nodes such as switchers and routers.
Three groups of features are extracted from each network
connection:

• basic features of individual TCP connections;

• content features within a connection suggested by do-
main knowledge;

• traffic features computed using as two-second time win-
dow.

The framework for constructing the above features for in-
trusion detection can be found in [14].

For each network connection, the feature values extracted
above form a vector

x = [x1, x2, ..., xd], (1)

where d is the number of features extracted. The label y
indicates the binary class of the network connection:

{
y = 1 normal connection
y = −1 network intrusion

. (2)

The intrusion detection algorithm is expected to train a clas-
sifier H from the labeled training data set, then use the
classifier H to predict the binary label ỹ = H(x) for a new
network connection.

2.2 Adaboost Algorithm
Adaboost [5] is one of the most popular machine learning
algorithms developed in recent years, which has been suc-
cessfully used in many applications, such as face detection
[21], and image retrieval [20].

The classical Adaboost algorithm is trained in batch mode,
which is showed in Table 1. Note that N is the number
of training samples, M is the number of weak classifiers to
generate, and Lb is the base model learning algorithm, such
as Naive Bayes and decision stumps. A sequence of weak
classifiers are learned based on the evolving sampling distri-
bution of the training data set. The final strong classifier is
an ensemble of the weak classifiers, and the voting weights
are derived from the classification errors of these weak clas-
sifiers.

The evolving weight w
(m)
n plays a key role in Adaboost. It

indicates the importance of the n-th training sample while

generating the m-th weak classifier. The weight w
(m)
n is

updated in the following way:

w(m+1)
n = w(m)

n ×
{

1

2(1−ε(m))
if h(m)(xn) = yn

1

2ε(m) if h(m)(xn) 6= yn

. (3)

The weights of samples that are wrongly classified by the
current weak classifier are increased, the others decreased, so
that more attention is paid to the samples that are difficult
to classify while selecting the next weak classifier.

Theoretical proof has been given in [5], which implies the
convergence of the weighted classification error for the final
strong classifier:

Σn:H(xn) 6=ynw(1)
n → 0, as M →∞. (4)

2.3 Online Boosting
In many applications, learning process need to be performed
in online mode. For example, when the training data are
generated as data streams, or the size of the training data
set is too huge for memory resources, it is impractical to
give the entire training data set to the learning algorithm
at a time. Training a classifier in online mode is necessary
in these cases. This opens a hot research field called “online
learning” or “incremental learning”. Online learning means
that we process a training sample, then discard it after up-
dating the classifier. There is likely some difference between

Table 1: Adaboost Algorithm

Input: {(x1, y1), ..., (xN , yN)}, M, Lb.

Initialization: w
(1)
n = 1/N, n = 1, ..., N .

For m = 1, 2, ..., M

h(m) = Lb({(x1, y1), ..., (xN , yN)}, w(m))

Calculate the weighted error of h(m):

ε(m) = Σn:h(m)(xn) 6=yn
w

(m)
n

Ifε(m) ≥ 1/2, then
set M = m− 1 and stop loop

end if

Update the weights:

w
(m+1)
n = w

(m)
n ×

{
1

2(1−ε(m))
if h(m)(xn) = yn

1

2ε(m) if h(m)(xn) 6= yn

Output the final strong classifier:

H(x) = sign(ΣM
m=1h

(m)(x) · lg 1−ε(m)

ε(m)).

the two classifiers that trained in batch and online modes,
since the online learning algorithm can only make use of the
information supplied by part of the training data set and
the processed data can not be retrieved. Thus, the key is-
sue of online learning research is how to control the above
difference while training a classifier online.

In order to adapt Adaboost to the data streams environ-
ment, Oza proposed an online version of Adaboost in [16],
and the convergence proof for the online version was also
given. Recently, Grabner and Bischof [6] successfully intro-
duced the online boosting algorithm into computer vision
field to select features online.

The detailed online boosting algorithm is presented in Table
2. Here h is the set of weak classifiers to be updated online,
Lo is the online base model learning algorithm. Note that in
the batch Adaboost algorithm, the sum of sample weights
remains 1:

N∑
n=1

w(m)
n = 1, m = 1, ..., M, (5)

where the definition of w
(m)
n is already given in Section 2.2.

While in online boosting, the weight λ evolves individually
for each training sample. As to the weighted classification
error of h(m), an approximation is used:

ε(m) =
λsw

m

λsc
m + λsw

m

, (6)

which involves only samples already seen. Moreover, the
number of weak classifiers is not fixed in Adaboost; while
in online boosting, the number of weak classifiers is fixed
beforehand, and the weak classifiers are all learned online.

Although it may differ greatly from that learned in batch
mode when only a few training samples have been processed,

Table 2: Online Boosting Algorithm

Input: {(x1, y1), ..., (xN , yN)}, M, h, Lo.

Initialization: λsc
m = 0, λsw

m = 0, m = 1, ..., M .

For each new training sample (x, y)

Initialize weight of the current sample λ = 1

For m = 1, 2, ..., M

Set k according to Poission(λ)
Do k times

h(m) = Lo((x, y), h(m))

If h(m)(x) = y, then
λsc

m = λsc
m + λ

ε(m) =
λsw

m
λsc

m+λsw
m

λ = λ(1

2(1−ε(m))
)

else
λsw

m = λsw
m + λ

ε(m) =
λsw

m
λsc

m+λsw
m

λ = λ(1

2ε(m))

end if

Output the final strong classifier:

H(x) = sign(ΣM
m=1h

(m)(x) · lg 1−ε(m)

ε(m)).

the online ensemble classifier converges statistically to the
ensemble generated in batch mode, as the number of training
samples increases [16]. The good performance of the online
boosting algorithm is also showed in many experiments in
[17].

2.4 Online Boosting Based Intrusion Detection
An intrusion detection algorithm is expected to fill mainly
the following three requirements in order to be suitable for
practical uses:

• the detection should be perform in real-time;

• the detection accuracy should be as high as possible,
which means a high detection rate to guarantee the
system security, and a low false alarm rate to decrease
unnecessary human burden;

• the detector should adapt quickly to the changing net-
work environments, which implies the ability to ac-
curately detect any new type of attack soon after its
emergence.

In order to make the updating of intrusion detector efficient,
the training of the detector should not be time-consuming,
which prevents the use of some complex classifiers; on the
other hand, the strict requirement of detection performance
makes the direct use of simple classifiers impractical. Con-
sider the variety of attribute of network connection data, the

situation is even worse. To successfully apply the idea of on-
line boosting into intrusion detection, the above difficulties
for intrusion detection should be considered carefully in the
design of weak classifiers.

We choose the weak classifiers to be the set of decision
stumps on each feature dimension. Thus the number of weak
classifiers M is fixed, which equals to the number of features
d in (1). These weak classifiers are learned online, and the
approximated weighted classification error (6) is updated
when a new training sample comes.

For a categorical feature f , the set of attribute values Cf is
divided into two subsets Cf

p and Cf
n with no intersection, and

the decision stump takes the form as

hf (x) =

{
1 xf ∈ Cf

p

−1 xf ∈ Cf
n

, (7)

where xf indicates the attribute value of x on the feature
f . To avoid the combinatorial computation of examining
all possible decision stumps, the division of Cf is efficiently
constructed in the following way:

z ∈
{
Cf

p

∑
xf=z δ(y = 1) ≥ ∑

xf=z δ(y = −1)

Cf
n

∑
xf=z δ(y = 1) <

∑
xf=z δ(y = −1)

, (8)

where z is an attribute value on the feature f in the training
data set, δ(·) equals to 1 if condition (·) satisfies, equals to
−1 otherwise.

For a continuous feature f , the range of attribute values
is split by a threshold v, and the decision stump takes the
following form:

hf (x) =

{
1 xf ≥ v
−1 xf < v

or hf (x) =

{ −1 xf ≥ v
1 xf < v

. (9)

The threshold v and the above two cases are chosen to min-
imize the weighted classification error

ε = Σn:hf (xn) 6=ynwn. (10)

The above design of weak classifiers has the following ad-
vantages in the intrusion detection task:

• the weak classifiers (7) and (9) only operate on indi-
vidual feature dimensions, which avoids the difficulty
caused by the large distinction of value ranges for dif-
ferent feature dimensions;

• the training of the decision stumps is simple, and the
online updating can be efficiently implemented;

• the detection performance is guaranteed by the final
ensemble of weak classifiers.

Thus, the proposed online boosting based method for intru-
sion detection seems suitable for practical uses.

2.5 Computational Complexity
Computational complexity is an important aspect for intru-
sion detection algorithms, since a fast response to network

intrusions is necessary for taking subsequent security mea-
surements in time. Particularly, when a new type of at-
tack appears, the characteristic of the new pattern should
be learned as soon as possible, and the ability of accurate
detection of the new attack should be quickly incorporated
into the detector.

For the proposed online boosting based intrusion detection
method, the learning and detection can be done in parallel.
When a new sample comes, we only need to update the
decision stumps and the related ensemble weights for each
feature dimension, so the computational complexity of the
online boosting learning is only O(d), where d is the number
of features of each network connection. Thus the updating
of the intrusion detector can be implemented very efficiently,
and the detector is expected to response quickly to new types
of attack. Moreover, the detection of the ensemble classifier
also has a computational complexity of O(d), which can be
implemented in real-time.

3. EXPERIMENTS
3.1 Intrusion Data Set
The KDD Cup 1999 data set [4] is used in our experiments,
since it is a widely used benchmark data set for many network-
based intrusion detection algorithms. It was used for the
1998 DARPA intrusion detection evaluation program, which
was prepared and managed by MIT Lincoln Labs. A net-
work environment was set up to simulate a typical U.S. Air
Force LAN, where a wide variety of intrusions were simu-
lated like in a real military network. Nine weeks of TCP/IP
connection data were collected, and they were labeled for
testing intrusion detection algorithms.

For each network connection, 41 features are extracted, in-
cluding 9 categorical and 32 continuous features. Attacks in
the data set fall into four main categories:

• DOS: denial-of-service;

• R2L: unauthorized access from a remote machine, e.g.,
guessing password;

• U2R: unauthorized access to local superuser (root) priv-
ileges;

• Probing: surveillance and other probing, e.g., port
scanning.

In each of the four categories, there are many low level attack
types.

The numbers of normal connections and each category of in-
trusions in the training and test data sets are listed in Table
3. Note that the test data is not from the same distribu-
tion as the training data, and it includes some attack types
not existing in the training data. This makes the task more
realistic. For more details of the intrusion data set, please
refer to [4].

3.2 Online Boosting Based Intrusion Detection
We use the following two measures to evaluate the perfor-
mance of the detection algorithm:

detection rate: DR = Ndetected
Nattack

× 100%, (11)

Table 3: The KDD Cup 1999 Data Set
Categories Training data Test data
Normal 97278 60593
DOS 391458 223298
R2L 1126 5993
U2R 52 39

Probing 4107 2377
Others 0 18729
Total 494021 311029

false alarm rate: FAR = Nfalse
Nnormal

× 100%, (12)

where Ndetected denotes the number of attacks correctly de-
tected, Nattack denotes the total number of attacks in the
data set, Nfalse denotes the number of normal connections
that are wrongly detected as attacks, and Nnormal denotes
the total number of normal connections.

We use the proposed online boosting based method to train
a detector on the training data, then apply the detector to
classify the test data. A high DR of 91.2756% is obtained
on the test data. However, the FAR is 8.3805%, which is a
little high for intrusion detection.

Generally, the more negative samples are concerned, the
higher DR is obtained, with a higher FAR. Note that the
normal samples only occupy 20% of the training data, which
makes the detector pay too much attention to the attack
samples. In fact, with the identical initial weight λ = 1
for each training sample in online boosting, the importance
of each binary class relates to the number of positive and
negative samples in the training data.

In order to balance the requirements of DR and FAR, we
introduce a parameter r ∈ (0, 1) in the setting of initial
weight λ for each training sample:

λ =

{
Nnormal+Nattack

Nnormal
· r normal connection

Nnormal+Nattack
Nattack

· (1− r) network intrusion
.

Through adjusting the parameter r, we can change the im-
portance of positive and negative samples in the training
process, and then get a balance between DR and FAR. The
selection of r depends on the proportion of normal samples
in the training data, and the requirements of DR/FAR in
the specific application.

After testing of some values between 0.05 and 0.95, we finally
get an appropriate setting of r = 0.35. With this value of
r, a much smaller FAR of 2.2374% is obtained, with a still
acceptable DR of 90.1329%. This result is more suitable for
the intrusion detection application.

For comparison, we also test the batch Adaboost algorithm
on the intrusion data set. The detection results of the above
algorithms on the test data are listed in Table 4. Note that
although learned in online mode, the detection accuracy of
the online boosting based method is comparable with that
of Adaboost which is learned in batch mode, and an ideal
small FAR can be obtained through appropriately adjusting
of the parameter r.

Table 4: Detection Results on the Test Data
Algorithms DR(%) FAR(%)

Online boosting 91.2756 8.3805
Online boosting (with r = 0.35) 90.1329 2.2374

Adaboost 92.6568 2.6686

To focus on some specific intrusion types, Jirapummin et al.
[8] employed a hybrid neural network model to detect TCP
SYN flooding and port scan attacks. In order to examine
the detection ability of the specific types of attack, a smaller
data set that contains only three attack types is constructed.
The samples are randomly selected from the KDD Cup 1999
data set, and the numbers of samples are listed in Table 5.
Detection results on the test data are presented in Table 6,
including also the results given by Sarasamma et al. [18]
for comparison. We can see that the specific types of intru-
sions are accurately detected by the online boosting based
method, and a smaller FAR is obtained compared with the
other two methods.

3.3 Fast Adaption to Changing Environments
In the online boosting based intrusion detection method,
the characteristic of a new type of attack is quickly learned
in online mode, and the ability to detect the new attack is
soon incorporated into the ensemble classifier. For example,
the learning processes of two attack types, “guess-passwd”(a
R2L attack) and“back”(a DOS attack), are showed in Figure
1 and Figure 2. The horizontal axis indicates the number
of samples of this attack, and the vertical axis indicates the
class label ỹ predicted by the detector. Note that ỹ = 1
means the sample is classified as a normal connection, and
ỹ = −1 means a network intrusion. We can see that the
new types of attack are accurately detected soon after online
learning on a few samples.

3.4 Comparison with Some Other Algorithms
We also compare the proposed method with some other re-
cent progresses on the intrusion detection research. For ex-
ample, Eskin et al. proposed a geometric framework for
unsupervised anomaly detection in [3], and three methods
are presented to detect anomalies in the data set: a cluster-
based approach, a k-nearest neighbor-based approach, and
a SVM-based approach. Unlike most intrusion detection
methods which use the whole 41 features, Kayacik et al. [9]
used only 6 of the most basic features, and they performed
intrusion detection based on self-organizing feature maps.
Recently, a multi-layer hierarchical K-Map was proposed by
Sarasamma et al. [18], and different combinations of feature
subsets can be selected to detect intrusions in the hierarchi-
cal framework.

Detection results of the above methods are listed in Table 7.
Note that these results are all obtained using the KDD Cup
1999 data set. We can see that the detection performance of
the online boosting based method is very comparable with
those of the other methods. Moreover, the online boosting
based method outperforms the other methods in the abil-
ity of efficient online learning of new intrusion types, which
is an attractive characteristic for intrusion detection in the
frequently changing network environments.

Table 5: A Smaller Data Set
Categories Training data Test data
Normal 20676 60593
Neptune 22783 58001
Satan 316 1633

Portsweep 225 354
Total 44000 120581

Table 6: Detection Results for Some Specific At-
tacks

Algorithms DR(%) FAR(%)
Hybrid Neural Networks [8] 90-99.72 0.06-4.5

Hierarchical K-Map [18] 99.17-99.63 0.34-1.41
Online Boosting 99.55 0.17

4. CONCLUSIONS
In this paper, an efficient online boosting based intrusion
detection method is proposed. The method outperforms ex-
isting intrusion detection algorithms in the adaptability to
the changing environments. The ability to detect new types
of attack is quickly incorporated into the ensemble classifier
without retraining the whole detector, and the detection can
be performed in real-time with high accuracy. Experimen-
tal results show the potential usage of the method in the
intrusion detection application.

5. ACKNOWLEDGMENTS
This work is partly supported by NSFC (Grant No. 60520120099
and 60672040) and the National 863 High-Tech R&D Pro-
gram of China (Grant No. 2006AA01Z453).

6. REFERENCES
[1] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and

M. Embrechts. Network-based intrusion detection
using neural networks. In Proc. of Artificial Neural
Networks In Engineering, November 2002.

[2] D. Denning. An intrusion-detection model. IEEE
Trans. on Software Engineering, 13(2):222–232,
February 1987.

[3] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and
S. Stolfo. A geometric framework for unsupervised
anomaly detection: Detecting intrusions in unlabeled
data. Applications of Data Mining in Computer
Security, 2002.

[4] S. S. et al. The third international knowledege
discovery and data mining tools competition [online].
available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
1999.

Table 7: Comparison with Some Other Algorithms
Algorithms DR(%) FAR(%)

Clustering [3] 93 10
K-NN [3] 91 8
SVM [3] 91-98 6-10
SOM [9] 89-90.6 4.6-7.6

Hierarchical K-Map [18] 90.94-93.46 2.19-3.99
Online Boosting 90.1329 2.2374

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Online learning of “guess-passwd” attack.

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Online learning of “back” attack.

[5] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[6] H. Grabner and H. Bischof. On-line boosting and
vision. In Proc. of Computer Vision and Pattern
Recognition, pages 260–267, 2006.

[7] P. Hong, D. Zhang, and T. Wu. An intrusion detection
method based on rough set and svm algorithm. In
Proc. of Int. Conf. on Communications, Circuits and
Systems, pages 1127–1130, June 2004.

[8] C. Jirapummin, N. Wattanapongsakorn, and
P. Kanthamanon. Hybrid neural networks for
intrusion detection systems. In Proc. of The 2002
International Technical Conference on
Circuits/Systems, Computers and Communications
(ITC-CSCC 2002), pages 928–931, July 2002.

[9] H. G. Kayacik, A. Zincir-Heywood, and M. Heywood.
On the capability of an som based intrusion detection
system. In Proc. of Int. Joint Conf. on Neural
Networks, pages 1808–1813, 2003.

[10] R. A. Kemmerer and G. Vigna. Intrusion detection: A
brief history and overview. Computer, 35(4):27–30,
April 2002.

[11] K. Labib and R. Vemuri. Nsom: A real-time
network-based intrusion detection system using
self-organizing maps. Networks and Security, 2002.

[12] A. Lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, and
V. Kumar. A comparative study of anomaly detection
schemes in network intrusion detection. In Proc. of
SIAM Conf. on Data Mining, 2003.

[13] W. Lee. A data mining framework for building
intrusion detection models. In Proc. of IEEE
Symposium on Security and Privacy, pages 120–132,
May 1999.

[14] W. Lee and S. J. Stolfo. A framework for constructing
features and models for intrusion detection systems.
ACM Trans. on Information and System Security,
3(4):227–261, November 2000.

[15] M. Otey, A. Ghoting, and S. Parthasarathy. Fast
distributed outlier detection in mixed attribute data
sets. Data Mining and Knowledge Discovery,
12(2-3):203–228, May 2006.

[16] N. Oza. Online Ensemble Learning. PhD thesis,
University of California, Berkeley, 2001.

[17] N. Oza and S. Russell. Experimental comparisons of
online and batch versions of bagging and boosting. In
Proc. of ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, 2001.

[18] S. T. Sarasamma, Q. A. Zhu, and J. Huff. Hierarchical
kohonenen net for anomaly detection in network
security. IEEE Trans. on Systems, Man, and
Cybernetics(B), 35(2):302–312, April 2005.

[19] D. Song, M. I. Heywood, and A. N. Zincir-Heywood.
Training genetic programming on half a million
patterns: An example from anomaly detection. IEEE
Trans. on Evolutionary Computation, 9(3):225–239,
June 2005.

[20] K. Tieu and R. Viola. Boosting image retrieval.
International Journal of Computer Vision,
56(1-2):17–36, 2004.

[21] R. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proc. of
Computer Vision and Pattern Recognition, pages
511–518, 2001.

[22] S. Zanero and S. M. Savaresi. Unsupervised learning
techniques for an intrusion detection system. In Proc.
of ACM Symposium on Applied Computing, 2004.

