
Topic Detection and Tracking for Threaded Discussion Communities

 Mingliang Zhu Weiming Hu Ou Wu
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

{mlzhu, wmhu, wuou}@nlpr.ia.ac.cn

Abstract

The threaded discussion communities are one of the

most common forms of online communities, which are
becoming more and more popular among web users.
Everyday a huge amount of new discussions are added
to these communities, which are difficult to summarize
and search. In this paper, we propose a topic detection
and tracking (TDT) method for the discussion threads.
Most existing TDT methods deal with the news stories,
but the language used in discussion data are much
more casual, oral and informal compared with news
data. To solve this problem, we design several exten-
sions to the basic TDT framework, focusing on the very
nature of discussion data, including a thread/post ac-
tivity validation step, a term pos-weighting strategy,
and a two-level decision framework considering not
only the content similarity but also the user activity
information. Experiment results show that our pro-
posed method greatly improves current TDT methods
in real discussion community environment. The discus-
sion data can be better organized for searching and
visualization with the help of TDT.

1. Introduction

As the web getting larger and more popular, the us-
ers of the web are becoming more and more active.
The web nowadays is not only a media to spread in-
formation, but also a place for people to express them-
selves. As a result, all kinds of web communities are
attracting users all around the world. For example, the
ShuiMu Community [5], one of the biggest BBSes in
China, typically has more than 10,000 users logged-in
at the same time and averagely has about 100,000 new
posts added each day.

The threaded discussion communities are one of the
most common forms of web communities. Typical
discussion forums and BBSes are examples of them.
Here are some basic concepts for threaded discussion
communities (refer to Figure 1):

Post: each time a user says something is called a
post. It is the atom object in discussion communities. A
post is attached with 4 properties: the timestamp, the

author (the user who makes the post), the title (all
posts in a thread share the same title, see below) and
the content (what the user says).

Thread: posts are organized in threads. Each post
belongs to and belongs only to one thread, and a thread
consists of a series (one or more) of posts. The first
post in thread is called the entry, which proposes some
subject to talk about, and set up the title for the thread
at the same time. Each of the other posts in the thread
is called a reply, since its content is this user’s reply to
either the entry post or a previous reply post.

Board: boards are subsections of a community, in
which discussions are all within the same fields. The
name “board” came from BBSes, but is used to de-
scribe the same concept in other communities. A typi-
cal comprehensive community may have all kinds of
boards, such as sports, music, computer-tech, etc.

The discussion data is a great challenge to search
engines. The query based search model does not work
well on the post level or even thread level. On the oth-
er hand, the community users may want a summary of
the bulk amount of the discussion data to see “what’s
hot” or “what’s going on”. The simple “reply-count”
strategy is not good enough for this demand.

Usually the discussions are with some trends: most
posts are just discussing a small number of topics (will
be verified in the Experiment section). One common
situation is that when something great happens in
people’s lives, there may be different threads discuss-

Figure 1. Different levels of views on threaded
discussion communities

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.50

73

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.50

77

ing different aspects of this certain event, such as the
event itself, its background, the people or places re-
lated to the event. Another example is that when
someone proposes some interesting subject in a thread
to talk, others that have same or opposite ideas may
open new thread to claim their opinions; on the other
hand, as the discussions go on, similar or related sub-
jects may be proposed in new threads.

An automatic online algorithm for topic detection
and tracking (TDT) for threaded discussion communi-
ties is proposed in this paper, which is an extension for
traditional topic detection and tracking [1] algorithms.
Traditional TDT mainly deals with news stories. But
the content in online communities is quite different
from common news stories, making it much more dif-
ficult to handle. The first problem with discussion data
is that the language used is more oral, casual and in-
formal. Even worse, misspellings and “Internet slangs”
appear heavily in discussions. These make discussion
contents not easy to understand even for humans with
little online experience. The second problem is that the
subject of a thread is often implicit in its content. For
example, in a series of threads discussing a soccer
game, a thread with title “I think No. 18 should be
substituted for!” and with replies saying “He plays
awful today”, “Yeah, much worse than last week
against …” would appear. But literally there may be no
apparent connections between this thread and others of
the same event. A third problem is that as the discus-
sion goes on, the users may become away from the
original topic. One common example is that acquain-
tance users may say “hello”, “what’s going on” and
begin to talk about trivial matters in each other’s lives.
In contrast, the language used in news stories is always
formal, accurate and all element of the event should
appear clearly in the content.

We propose a set of extensions to the basic model
that is widely used in traditional TDT tasks to address
the problems in threaded discussion communities, in-
cluding: (1) a post and thread activity validation step is
introduced to filter out posts and threads that do not
provide informative contents. Uninformative contents
bring a lot of noise. (2) a term pos-weighting strategy
is designed for discussion data so that the analyzing
can focus on the central part of the content. And (3)
the user activities (authorship information) are taken
account to topic detection and tracking - posts are
submitted by different community users, and this is a
major difference between discussion data and news
data. Each user has respective interest and pattern, and
so that the consideration of user activity is a great
complement to the discussion contents.

With the topic detection and tracking, the discus-
sion community data can be organized and indexed at a

higher level, making it much easier to search and vi-
sualize. Mining can be done within topics to extract
their underlying trends. Furthermore, besides online
communities, many other data have the threaded struc-
ture, such as email messages. Similar algorithm may
also help to improve the user experience for these data.

2. Related work

Topic detection and tracking (TDT) has been wide-
ly studied for years [1][3][7][8][12][14][15]. Most of
them are designed for analyzing news stories, which
are much “cleaner” compared with discussion content
in online communities. As a result, the existing tech-
niques may not achieve good performance on discus-
sion contents, which is proved in our experiments (see
section 4). Among the online TDT algorithms, the in-
cremental TF-IDF model [1][3][14][15] is one of the
dominant content relevance measurements.

A couple of related work on online communities
was reported. Kim et al [6] proposed a method to seg-
ment topics in a single discussion thread (hierarchy).
Topic segmentation is also developed for online chat
data, such as in [2] and [13]. All these addressed the
problem of topic analysis in the online community
environment, but they actually deal with the problem
of segmenting different topics in a single thread (all
chat contents in a single chat room or IRC channel can
be viewed as a single data-stream) rather than detect-
ing topics among multiple threads. The segmenting
problem is then transformed into finding certain posts
that the topic changes. In our problem, different topics
are overlapped and multiple topics may be discussed at
the same time, so these segmentation methods cannot
be applied to solve our problem. There is also related
work on community user modeling. Social networks [9]
are widely used to model the user interactions in online
communities. Steyvers et al [11] proposed a model
combining the authorship information and the latent
topic model for text mining.

3. Topic Detection and Tracking for
Threaded Discussion Communities

3.1. Overview

Our method for topic detection and tracking for
threaded discussion communities is described in this
section. Figure 2 demonstrates the outline of our me-
thod. Every time a new post comes all its properties is
extracted in the pre-processing step. Then the activity
validation is taken for the post and the thread contain-
ing the post. If the thread is active enough, its content
status and user status is updated and the topic list is

7478

then updated based on the result of both the content
analysis and the user activity analysis.

3.2. Pre-processing and post/thread activity validation

Posts are the atom objects in threaded discussion

communities. The pre-processing step extracts the
structural properties from the raw post data, including
the post title, author, posting time, content, as well as
the thread id which the post belongs to. The title (only
for entry posts; the reply posts always share the same
title with the entry) and the content is further tokenized
into term sequences, and stop-words are removed.

After pre-processing, a post activity validation step
is taken, in which the informativeness of posts are
tested. In the online discussion community environ-
ment, there are many posts with little information
about what topic they are talking about, such as
“That’s great”, “I agree with you”. These posts bring a
lot of noise for topic analysis. Filtering out uninforma-
tive posts is a little like commonly used stop-word re-
moval, but provides control of useless information on
the whole post level rather than term level, which may
be more precise and effective.

A standard one-class SVM classifier [10] is used for
post activity validation. One-class SVM was proposed
by Schölkopf [10] for estimating the support of a high-
dimensional distribution, and so that is able to generate
classifiers based on a training set that is consist of only
positive (or negative) samples. In our problem, the
uninformative (negative) posts may have common pat-
terns but informative (positive) posts may vary a lot. It
is not possible to provide a training set to cover the
distribution of all positive samples. In our method, the
post activity validation classifier is trained by a set of
pre-labeled negative (uninformative) posts. The details
of the one-class SVM can be found in the original pa-
per, and here we only show some key formulas.

Let xi∈ Թn, i = 1, …, l be the pre-labeled negative
posts, where each xi is the term frequency (TF) vector
of the content (title is not included) of each post, n is
the size of the vocabulary and l is the number of the
training samples. Let k be a kernel function and Φ be
the corresponding feature map that maps the feature
space Թn into an inner product space ࣠:

Φ : Թn → ࣠,
k (xi, xj) = (Φ(xi) ڄ Φ(xj)). (1)

In our method, the typical Gaussian kernel is used:

 2|| || /(,) i j c
i jk e− −= x xx x (2)

To separate the date set from the outliers, the following
quadratic program is to be solved:

2

F, ,

1 1min || ||
2

subject to (()) , 0

l iiw

i i i

w
l

w
ρ

ξ ρ
ν

ρ ξ ξ
∈ ∈ ∈

+ −

⋅Φ ≥ − ≥

∑
ξ

x

 (3)

where ν∈(0,1] is a parameter to control the trade-off
between the coverage and the “volume” of the distribu-
tion region learned, and ξi are non-zero slack variables.

Suppose w* and ρ* (ξi are penalized in the objective
function in equation (3)) are the solution to the target
in equation (3), then the decision function is:

 f (x) = sgn(ρ* – (w* ڄ Φ(x)) (4)

where output -1 indicates the post to be uninformative
(within the distribution of the training set) and +1 to be
informative. The details of solving the quadratic pro-
gram in equation (3) are beyond the scope of this paper
and can be found in [10].

Threads that only contain a single uninformative
post are treated as inactive. Each inactive thread is
determined to be within a separate topic. As we ex-
amined real discussion transcripts, these inactive
threads are usually paid little attention to and are likely
to be forgotten soon with no further discussion on its
topic. However, if new posts come into an inactive
thread, it shall be activated and its topic status is up-
dated. But all uninformative posts are still ignored in
the following content analysis step.

3.3. Content similarity and term weighting

Content similarity is strong evidence that different

threads are in the same topic. The thread content simi-
larity calculation in our algorithm is based on the typi-
cal incremental TF-IDF model which is widely used in
traditional TDT algorithms. We extend the base model
with a particular term weighting strategy designed for
discussion threads, as well as a modified frequency
update strategy for the online community environment.

In our algorithm, a pos-weighted term frequency
(TF) vector is kept for each seen thread and a global
document frequency (DF) vector is kept among all
threads. The frequency values in TF are weighted by
the position at which the term appears in the thread.
The pos-weight wpos is assigned as follows

New
post

Post/thread
activity

validation

Thread
content
analysis

User
activity
analysis

Update
topic list

Pre-
processing

Figure 2. Outline of the algorithm framework

7579

5, terms in
1, first 40 terms in (if informative)

first 15 terms in each of the1, first 16 informative
0, otherwise

pos

title
entry

w
replies

⎧
⎪
⎪

= ⎨
⎪
⎪
⎩

 (5)

The pos-weighted strategy defined in equation (5) fa-
vors terms appeared in the title, and the contents are
regulated to certain lengths. These make the TF vectors
focus on the most informative part of a thread. Fur-
thermore, all post since the 18th are simply eliminated
in the TF vector because (1) the discussion may get
away from the original topic and turn into some trivial
matters, while there is usually enough information to
determine the topic for a thread in its first 17 posts, and
(2) according to the definition of wpos, the TF vector do
not have to be updated any more after seeing 17 post
(the time at which the newest post in the thread comes
is still updated however, which is to be used later).
Keeping 17 posts is a balance of reserving enough in-
formation of a thread and the consumption of compu-
ting resources. The DF value for a term indicates how
many of seen threads contain this term.

Both the TF and DF vectors are updated incremen-
tally and periodically. The initial DF vector DF0 is
generated from a (could be empty) base set ࣜ, and is
updated at time t as:

 dft (w) = dft-1 (w) + dfCt (w) (6)

where dft (w) is the DF value for term w at time t, and
dfCt (w) is the number of threads whose new coming
posts during time span t-1 and t contain term w while
old posts before time t-1 never contained w. The TF
vector for a thread is initialized when it is opened, and
is updated at time t as:

 tft (d, w) = tft-1 (d, w) + tfCt (d, w) (7)

until 17 informative posts of it have arrived (as dis-
cussed earlier in this section). tft (d, w) denotes the pos-
weighted TF value for term w in thread d at time t, and
tfCt (d, w) denotes the pos-weighted count of term w in
new coming posts of thread w (if any) during time span
t-1 and t.

The Hellinger distance is used to calculate the con-
tent similarity of two threads:

1 2 1 2(,) (,) (,)tf idf tf idf

t t t
w

csim d d w d w w d w⋅ ⋅= ⋅∑ (8)

Where wt
tfڄidf(d, w) is the TF-IDF weight of term w in

thread d at time t, which is calculated based on the TF
and DF vectors:

 1(,) (,) log
() ()

tf idf t
t t

t t

Nw d w tf d w
Z d df w

⋅ = ⋅ (9)

where Nt is the total number of seen threads (including
those in the base set ࣜ), by which the DF vector is
generated. Zt(d) is a normalization factor:

 () (,) log
()

t
t t

w t

NZ d tf d w
df w

= ⋅∑ (10)

3.4. User activity analyze

One significant difference between discussion

threads and other web documents is that threads con-
sist of posts composed by different community users.
So it is natural to utilize user information for topic
analysis of discussions. One of the most widely used
community user model is the social network [9], which
describes relationships among community users. But it
seems that the user interactions may not directly help
to infer the topic of a thread. Alternatively, we make
use of the following assumption: a certain community
user is interested in some certain topics, and tend to
discuss in threads that belong to the topics that he or
she is interested in. There are already some text mining
methods using similar authorship assumption such as
in [11]. Based on this assumption, if a certain number
of users take part in both of two threads, these two
threads are probably in the same topic. In our algo-
rithm, we introduce a UF-ITUF (user frequency-
inverse thread user frequency) model to measure the
similarity of the group of users who take part in two
threads.

The UF-ITUF model is much like the TF-IDF mod-
el which is used to calculate content similarity. A UF
vector [uf(di, u1), uf(di, u2), …, uf(di, un)] is maintained
for each thread di, where uf(di, uj) is the number of
posts composed by user uj in di, and n is the total num-
ber of users in the community. A global TUF vector
[tuf(u1), tuf(u2), …, tuf(un)] is also maintained where
tuf(ui) denotes the number of threads in which user ui
ever posted. The TUF is used as a punishment term
(ITUF) in similarity calculation. Intuitively, if a user
posted in a lot of threads, his or her participation is not
expected to be as distinguishing as those who posted in
fewer threads. Given the UF and the ITUF vectors, the
Hellinger distance can be used as user group similarity
measure of two threads:

1 2 1 2(,) (,) (,)uf ituf uf ituf

u

usim d d w d u w d u⋅ ⋅= ⋅∑ (11)

where wufڄituf (d, u) is the UF-IDUF weight of user u in
thread d, which is defined similar to the TF-IDF

7680

weight used in section 3.3:

 ()

()

1(,) (,) log
() ()

() (,) log
()

uf ituf

u

u
u

Nw d u uf d u
Z d tuf u

NZ d uf d u
tuf u

⋅ = ⋅

= ⋅∑

 (12)

The UF and TUF vectors are also updated incre-
mentally. When new posts/threads come, the new au-
thorship information is added to the UF and TUF vec-
tors maintained.

3.5. Making the decision

The content similarity and user activity similarity
are combined to decide whether a thread starts a new
topic or discusses the same topic as some previous
threads. At the end of each time period, after the con-
tent and user activity data is updated, the thread simi-
larities are then calculated, and so as the topic collec-
tion is to be updated. Different from news stories, the
posts of a thread do not come at the same time, but
come one after another arbitrarily. At a certain time
point, it is even not possible to tell whether a thread is
finished (unless it is deleted from the community),
although it may have been quiet for a while. As a result,
the topic class of a thread may be updated when new
posts of it or of previous threads come. Apparently, it
is unrealistic to recalculate similarities for all seen
threads every time to update the topic collection. How-
ever, topics on discussion communities usually have
limited life times. In most cases, there would be no
further discussion on a topic if there has been no post
in that topic for about two days. As a result, threads
whose latest post came more than two days ago are not
included in topic collection update. Furthermore, the
TF vector for a thread will not change after seeing 17
informative posts (refer to section 3.3) and after 20 for
UF vector, so the topic class fixes for a thread after
receiving 20 posts in our method, even if its previous
thread may still be updating. These two strategies
guarantee the online system to be running in real-time.

To determine the topic of a thread d0, first we
search for the thread dc

* within the 2-day window w2d
that has the highest content similarity to d0:

2

0arg max (,)
d

c t
d win

d csim d d∗

′∈
′= (13)

and the corresponding similarity value csimt (d0, dc
*) is

compared with a threshold θc1. If exceeds the threshold,
the target thread d0 is classified to be in an old topic.
Otherwise, d0 is possibly discussing a new topic. Simi-
larly, for the user analysis results, the thread du

* in the
2-day window with highest user similarity to d0 is

searched for:

2

0arg max (,)
d

u t
d win

d usim d d∗

′∈
′= (14)

However, different from content similarity, the user
group similarity can only be used as “verification” but
not “falsification”: we can decide that two threads are
of the same topic if their content is similar while of
different topics if the content differs, but for user
group similarity, usually only the first statement holds,
while two threads may still be discussing the same
topic when they are conducted by different groups of
users. To solve this problem, a two-level decision
strategy is designed to combine the content and the
user analysis results, illustrated in Figure3. An extra
threshold θc2 for content similarity is introduced satis-
fying:

 0 < θc2 < θc1. (15)

If the dc
* found satisfies csimt (d0, dc

*) > θc1, then
thread d0 is decided to be in the same topic as thread
dc

*. If csimt (d0, dc
*) < θc2, thread d0 should be discuss-

ing a new topic. And finally if θc2 < csimt (d0, dc
*) < θc1,

the user group similarity is further considered: if
usimt (d0, du

*) > θu, d0 is supposed be of the same topic
as thread du

*, or otherwise d0 is discussing a new topic.
Since there are three thresholds to make the decision,
the parameter tuning is a little complicated than decid-
ing only with contents similarities. First, candidate
values for θc1 and θu can be found by optimizing the
performance with only content decision and only au-
thorship decision separately (authorship is also used
for “falsification” in this step). Then, the combination
of the three parameters is searched around their possi-
ble values: θc1 and θu are around their candidates val-
ues found in the previous step, and θc2 is regulated in
equation (15).

4. Experiments

In order to evaluate the performance of our pro-
posed method, intensive experiments are conducted
and the results are reported in this section.

Target
thread d0

csim(d0, dc*) > θc1

θc2 < csim(d0, dc*) < θc1
and usim(d0, du*) > θu

No

Old topic
With dc* New topic

Yes
Yes No

Old topic
With du*

Figure3. Two-level decision process

7781

Since there are no public data sets for threaded dis-
cussion communities, we create our experiment data
sets by downloading posts from real online communi-
ties. The data are from the “NewExpress” board on the
ShuiMu community [5], which is one of its most popu-
lar boards. All posts during Feb. 22, 2008 and Mar. 10,
2008 are downloaded by our spider. The raw post data
are then parsed and post properties are extracted, in-
cluding: the timestamp, the author, the title and the
content. The thread relations of posts are also extracted.
System posts such as community notifications are ex-
cluded from the data sets. There are totally 122307
posts of 13707 threads in the data set, averagely
6794.8 posts and 761.5 threads every day.

The data are then divided into two subsets: (1) the
base set ࣜ for training the classifier in the post/thread
activity validation step and generating the initial DF
and TUF vectors; and (2) the testing set ࣮ for testing
the performance of our proposed algorithm. The posts
during Feb. 22 and Feb. 29 are used as the base set ࣜ
and posts during Mar. 1 and Mar. 10 are used as the
test set ࣮ (the posts after Mar. 1 but belonging to
threads started before Mar. 1 are still put in ࣜ). 9014
posts in set ࣜ are manually labeled with “informative”
or “uninformative”, in which 3503 uninformative posts
are used to train the activity validation classifier. The
LIBSVM library [4] is used for one-class SVM train-
ing and classification in our experiments. The threads
in set ࣮ are manually clustered into topic collections,
which are used as ground truth in the experiments.
Totally 2980 topics are identified. A majority of the
topics (more than 2000) consists of only one thread,
but the rest (topics that consist of more than one
threads) cover over 68% of all posts. That is to say,
although there are a lot of topics, most of the posts are
discussing only a small number of topics. This shows
the necessity of DTD on the discussion communities.

The CDet evaluation metric which is widely used in
TDT methods is used to evaluate the performance of
our method. To measure the performance, the TDT is
divided into two sub tasks: new topic detection (NTD)
and topic tracking (TT), each generating a Yes/No
output. The NTD determines whether a thread is dis-
cussing a new topic that is never seen before. The TT
task determines whether a given thread belongs to a
given topic. By testing on each decision instance for
the two tasks (each thread for the NTD, and each top-
ic-thread pair for the TT), the decision error PMiss (miss
rate) and PFA (false alarm rate) is calculated. Miss oc-
curs when the system to output No for a Yes test in-
stance, while false alarm is for outputting Yes for a No
test instance. The CDet metric is defined by combining
PMiss and PFA:

 CDet = CMiss ڄ PMiss ڄ Ptarget + CFA ڄ PFA ڄ Pnontarget (16)

CMiss and CFA are costs for misses and false alarms.
CMiss = 1 and CFA = 0.2 are used in the experiment.
Ptarget is the probability of seeing a Yes instance and
Pnontarget is the probability of seeing a No instance.
Appearently Ptarget = 1 - Pnontarget holds. The Ptarget is set
to 0.3 for new topic detection and 0.02 for topic
tracking. The reported CDet cost is normalized as:

 ()
min(,)

Det
Det norm

Miss target FA nontarget

CC
C P C P

=
⋅ ⋅

 (17)

The minimum CDet costs are shown in Table 2 (pa-
rameters are tuned for NTD only, and results for TT
are using parameters that minimize CDet for NTD, since
TT shares the same parameters with NTD and cannot

Table 1. Summary of the data sets
 Base set ࣜ Test set ࣮ Total

Post 54340 67967 122307
Thread 6444 7263 13707

Informative label 5511* N.A. 5511
Uninformative label 3503* N.A. 3503

Topics N.A. 2980 2980
* Only 9014 post in Base set ࣜ are labeled with informative
or uninformative.

Table 2. Minimum normalized CDet cost
 NTD TT

Full system: Act. valid., term
weight, user analysis 0.759 0.363

Act. validation, term weighting 0.788 0.380

Base system: title + content,
no term weight 0.857 0.423

Figure 4. DET curve for new topic detection

7882

be separately tuned). Since we found no topic detec-
tion and tracking algorithms proposed for discussion
communities, the classical content-only method (with-
out thread/post activity validation, and no term weight-
ing for post title and content) is used as a baseline for
comparison. Also the result with thread/ post activity
validation and term weighting but without user analy-
sis is reported. The detection error tradeoff (DET)
curve of the NTD is shown in Figure 4 (the curve for
TT is not shown since parameters for the TT is not
separately tuned in our problem).

The final results show that our proposed algorithm
constantly outperforms the base system, yielding an
improvement of 0.098 in NTD and 0.060 in TT to the
minimum normalized CDet cost. Considering Figure 4,
the post/thread activity validation and term pos-
weighting improved the minimum CDet cost for the
NTD by 0.069, but the improvement is not much on
the side of curve that favors low miss rate. The main
reason of this is that for many of the discussion threads,
their topic-distinguishing terms are implicit but can be
implied in their context. Most terms in these threads
are oral and trivial, so their content similarity to other
threads are small and they are often be decided as a
new topic. The results based on both content and user
information outperforms the base system on both side
of the curve, which proves that the user activity infor-
mation is a strong complement to the content evidence,
especially for threads whose topic is implicit.

5. Conclusion and future work

The online communities are becoming more and
more popular along with the explosive development of
the web. In this paper, we have proposed an algorithm
to accomplish the topic detection and tracking task
(TDT) in the threaded discussion community environ-
ments. Different from the news stories which most
TDT methods deal with, the language used in online
discussions is much more casual, oral and informal,
making it much more difficult to recognize. We have
introduced a thread/post activity validation step, a term
pos-weighting strategy, and a two-level decision
framework considering both content similarity and
user activity information to improve the based system
used in traditional TDT methods. The experiment re-
sults have shown the effectiveness of our proposed
method. With the topics being analyzed, the discus-
sions in online communities can be categorized and
organized at a higher level, making the searching and
visualization on the discussion data much easier. How-
ever, the performance of TDT on discussion data is
still not as good as those of news stories, partly be-
cause of the very nature of discussion threads. In our

future work, we will keep looking for methods to fur-
ther improve the performance of the TDT system for
online communities.

6. Acknowledgment

This work is partly supported by NSFC (Grant
No.60672040, 60705003) and the National 863 High-
Tech R&D Program of China (Grant No.
2006AA01Z453).

7. References

[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron and Y.
Yang. “Topic detection and tracking pilot study: Final re-
port”. In Proc. of DARPA Broadcast News Transcription and
Understanding Workshop, 1998.
[2] J. Bengel, S. Gauch, E. Mittur and R. Vijayaraghavan.
“Chattrack: Chat room topic detection using classification”.
In 2nd Symposium on Intelligence and Security Informatics,
Tucson, Arizona, 2004, pp. 266-277.
[3] T. Brants, F. Chen and A. Farahat. “A System for New
Event Detection”. In Proc. of ACM SIGIR‘03, 2003, 330-337.
[4] C.-C. Chang and C.-J. Lin, LIBSVM: a library for sup-
port vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[5] http://www.newsmth.net/
[6] J. W. Kim, K. S. Candan and M. E. Dönderler, “Topic
segmentation of message hierarchies for indexing and navi-
gation support”, in Proc. of WWW‘05, 2005, 322-331.
[7] G. Kumaran and J. Allan. “Text Classification and
Named Entities for New Event Detection”. In Proc. of ACM
SIGIR04. 2004, 297-304.
[8] J. Makkonen, H. Ahonen-Myka and M. Salmenkivi,
“Simple Semantics in Topic Detection and Tracking”, Infor-
mation Retrieval, Springer, 2004, 347-368.
[9] N. Matsumura, D. E. Goldberg and X. Llorà, “Mining
directed social network from message board”, in Proc. of
WWW’05, 2005, 1092-1093.
[10] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola
and R. C. Williamson. “Estimating the support of a high-
dimensional distribution”. Neural Computation, 2001, 13(7),
1443-1471.
[11] M. Steyvers, P. Smyth, M. Rosen-Zvi and T. Griffiths,
“Probabilistic author-topic models for information discov-
ery”, in Proc. of ACM SIGKDD’04, 2004, 306-315.
[12] N. Stokes and J. Carthy. “Combining Semantic and
Syntactic Document Classifiers to Improve First Story De-
tection”. In Proc. ACM SIGIR’01. 2001, 424-425.
[13] V. H Tuulos and H. Tirri, “Combining Topic Models
and Social Networks for Chat Data Mining”, In Proc. of
WI’04, 2004, 206-213.
[14] Y. Yang, T. Pierce and J. Carbonell. “A Study of Re-
trospective and On-line Event Detection”. In Proc. of ACM
SIGIR’98, 1998, 28-36.
[15] K. Zhang, J. Li and G. Wu. “New Event Detection
Based on Indexing-tree and Named Entity”. In Proc. of ACM
SIGIR’07, 2007, 215-222.

7983

