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Abstract

Identifiability becomes an essential requirement for learning machines when the models contain physically interpretable parameters.

This paper presents two approaches to examining structural identifiability of the generalized constraint neural network (GCNN) models

by viewing the model from two different perspectives. First, by taking the model as a static deterministic function, a functional

framework is established, which can recognize deficient model and at the same time reparameterize it through a pairwise-mode symbolic

examination. Second, by viewing the model as the mean function of an isotropic Gaussian conditional distribution, the algebraic

approaches [E.A. Catchpole, B.J.T. Morgan, Detecting parameter redundancy, Biometrika 84 (1) (1997) 187–196] are extended to deal

with multivariate nonlinear regression models through symbolically checking linear dependence of the derivative functional vectors.

Examples are presented in which the proposed approaches are applied to GCNN nonlinear regression models that contain coupling

physically interpretable parameters.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Parameter estimation (or identification) is an important
tool in system modeling. It occurs whenever one wants to
model a process using a parameterized model. However,
determining identifiability of the model being used should
be addressed before any implementation of identifications
[26,24,11], because identifiability is closely related to the
convergence [17,23,5] of a class of estimates (including the
maximum likelihood estimate, MLE). Lack of identifia-
bility gives no guarantee of convergence to the true value of
parameters and therefore usually gives rise to confusing
e front matter r 2007 Elsevier B.V. All rights reserved.
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results, which is a critical issue especially when some
parameters are of practical importance. Besides the ability
to detect deficient models in advance, the analysis of
identifiability can also bring practical benefits, such as
insightful revealing of the relations among inputs, outputs
and parameters, which can be very helpful for model

structure designing & selection [25,24,5] and numerical

estimation [11]. In particular, the importance of identifia-
bility in machine learning can be recognized in at least
threefold:
�
 Un-/semi-supervised learning: Identifiability seems not a
big deal in supervised learning, where output–input
behavior has dominant importance and lack of iden-
tifiability merely means that one obtains an equivalent
class of parameter vectors [13]. However, it is of
fundamental importance in unsupervised and semi-
supervised learning [10,5], where incomplete data or
latent variables are usually involved and identifiability is
necessary to ensure coherent inference of such latent
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variables. For instance, in mixture density models, if the
parameter cannot be determined uniquely, the mixture
cannot be decomposed into its true components. Other
examples include Kalman Filter models, Bayesian net-
works, etc.

�
 Physically interpretable (sub-)models: Identifiability is

also of fundamental importance if we wish to interpret
the parameter values discovered by a model [4,26] or if
the parameterization of the model is based on physical
prior knowledge of the process [12,9]. In both cases, the
model parameters are of practical importance, and to
identify the true values of such parameters is imperative
because nonuniqueness of such parameters not only
means nonunique description of the process but also
results in severe ill-conditioned identification problems
so that estimation gives rise to completely erroneous or
misleading results. For example, in hybrid neural
network (NN) [20,27], sub-models may contain real-
world parameters, whose identification is also a critical
task.

�
 Reliable neural modeling: A critical problem with the

artificial neural networks (ANNs) lies in that: on the one
hand, minor setting changes (e.g., initialization, the
number of hidden layers or units, outliers, etc.)
could lead to totally different results [15]; on the other
hand, when the number of hidden units is large,
the training errors may be rather insensitive to those
factors [2]. This problem makes the NN technique less
reliable in application in comparison with the other
existing methods (e.g., methods based on convex
optimization such as support vector machines). Re-
cently, a convex NN formulation [2] is proposed to
address this problem, but it is rather computational
expensive. Theoretically, an obvious alternative to
address the unreliability problem of NNs will be to
carefully design/select the model structure so as to make
sure the parameters can be uniquely determined upon
any nontrivial training data set. If the model being used
is structurally identifiable, the ill-condition problem
might be alleviated [26].

The structural identifiability (s.i.) is concerned with the
uniqueness of the parameters determined from the in-
put–output data. The term ‘structural’ means independent
of the parameter values [12]. If different parameter values
lead to different output throughout the parameter space,
the model is said to be structurally global identifiable
(s.g.i.); if all different parameter values that lead to
identical output are isolated from each other, the model
is structurally local identifiable (s.l.i.), otherwise, it is
structurally nonidentifiable (s.n.i.).

Structure identifiability is a fundamental prerequisite for
implementation of identifications. Indeed, this problem
should be addressed, as part of the qualitative experiment
design [5] or model selection [4], before any experimental
data have been collected because the difficulties associated
with identification usually stems from the structure of the
model and the method of parameterization rather than
inappropriate experiment designing or poor data collec-
tion. In other words, if the model is structurally unidentifi-
able, no matter how carefully we design the experiment or
how good the observations are, one will definitely fail to get
a reasonable estimation, even when a model selection
criterion (e.g., AIC, BIC, etc.) or regularization term is
employed to penalize the complexity of the model. There-
fore, once a model structure has been chosen (or a set of
structures among which one will have to choose), one
should test the structure identifiability, as independently of
the data as possible, so as to rule out priori unidentifiable
models to avoid potential defects.
This paper concerns s.i of the generalized constraint

neural network (GCNN, [18]) nonlinear regression models
with coupling parameters, since some parameters in
GCNN (e.g., the parameters in the partially known
relationship (PKR) sub-models) are usually of practical
interest. Although the problem involving identifiability has
been extensively studied and there have already been a host
of existing approaches in the literature, none of these are
appropriate for this purpose (see Section 3 for details). In
this paper, two different approaches are established by
viewing the model from two distinct perspectives. First, by
viewing the models as static deterministic nonlinear
functions, we present a functional framework for this type
of models and propose a novel method to test parameter
dependence based on this framework. This method also
naturally leads to a pairwise-mode reparameterization
approach through detecting and eliminating parameter
dependent pairs. However, in the current version, it is only
workable for single-input-single-output (SISO) models.
Trivial as it seems, this method may provide a new
perspective to nonidentifiability. Second, by introducing
an augmented noise model and treating the GCNN
models as mean functions of Gaussian conditional
distributions, we enable the problem to be considered in
the conventional stochastic framework; and by modifying
the definition of derivative matrix (DM) to redefine a
derivative functional vector (DFV), we are able to modify
the algebraic approach in [6] to test parameter redundancy
of the Gaussian conditional distributions in terms of
the symbolical linear dependence of DFV. Both of the
two approaches have strengths and limitations. While the
former provides a natural way for reparameterization, it is
relatively complex and only workable for SISO models
currently. The latter is simple and efficient, and can also
deal with multivariate regression models with isotropic
Gaussian noise, however, it tells nothing about reparame-
terization when redundancy is detected.
The organization of this paper is as follows. Section 2

introduces the GCNN models briefly. In Section 3, We give
a concise overview of the literature, and show why none of
the existing methods is able to tackle the problem
satisfactorily. Section 4 presents the functional framework
for static deterministic models and establishes a criterion
based on it. Section 5 redefines a DFV and modifies the
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approach in [6] to test parameter redundancy for isotropic
Gaussian conditional models. And finally, Section 6
summarizes the whole paper.

2. Generalized constraint neural network (GCNN)

In an attempt to enhance the NN technique so that it can
evolve from a black-box tool into a semi-analytical one, Hu
et al. [18] proposed a GCNNmodel for nonlinear regression,
which impose generalized constraints on ANN models so
that available prior knowledge (which may be incomplete,
imprecise, nonquantitative, uncertain or even incorrect) can
be expressed partially and thus can play an explicit role in
modeling highly complex systems. Specifically, the general-
ized constraints are extended so that they can be any form of
PKR knowledge about the process being studied.

The GCNN model basically consists of two sub-models.
One is constructed by the standard NN (e.g., RBF,
sigmoidal, etc.) technique to approximate the unknown
part of the target system. The other is formed from PKR to
impose generalized constraints on the whole model
explicitly. Fig. 1 shows a schematic configuration of a
GCNN model. The upper part of Fig. 1, gðx; hgÞ, represents
the PKR sub-model, and the lower part hðx; hhÞ represents
the NN-sub-model. The GCNN model is formulated as
f ðx; hÞ ¼ gðx; hgÞ,hðx; hhÞ, where, denotes a specific type
of coupling (connection) between the two parts. This
configuration provides a flexible representation to various
forms of two interacting sub-models. For more details, see
[18] and the references therein.

Numerical experiments proved the advantages of the
GCNN models [18] in, e.g., improving the generalization
capability of NNs, enhancing the interpretability of the
resulted models, speeding up the learning phase, extending
applications to highly complex system modeling, etc.
However, a critical issue was also seen arising from
combining two sub-models, that is, the interactive coupling
between the two sub-models tends to introducing different
parameter values which lead to the same input–output
behavior, i.e., the model is usually unidentifiable.

Since the PKR sub-model usually contains physically
interpretable parameters (e.g., parameters in a subset of hg)
Fig. 1. (a) Schematic diagram of nonlinear regression problems. (b) Architectu

partially known relationship (PKR) sub-model and neural network (NN) sub
whose identification is of fundamental importance to the
understanding of the process, the investigation of structur-
al identifiability of the GCNN model, which is exactly the
topic of this paper, is imperative.

3. Identifiability: basic concepts and existing methods

In the literature, most studies concerning identifiability
can be categorized into two frameworks according to the
modeling type, i.e., the stochastic framework for probabil-
istic models [22,24,6,16] and the noise-free framework for
dynamic state-space models [26,3,21,12]. However, since
the problem is only solvable for several types of models
(e.g., polynomial, rational, etc.) in the noise-free frame-
work and that the GCNN models are mostly static, we will
mainly concentrate on the stochastic framework in this
section.
The stochastic framework concerns identifiability of the

parameters in a certain probability distribution function
(PDF) model.
Assume that x is a random vector in Rn, whose

distribution function f ðx; hÞ, is controlled by a set of
parameters h. Let the parameter vector h ¼ ðy1,
y2; . . . ; ypÞ 2 S, where p is the total number of parameters
in the model and S denotes the parameter space. Following
[22], we have the following definition.

Definition 1. A parameter point hð0Þ 2 S is said to be locally
identifiable ðl:i:Þ if there exists a neighborhood U such that
any h 2 U satisfying f ðx; hð0ÞÞ ¼ f ðx; hÞ for all x 2 Rn leads
to h ¼ hð0Þ; if U ¼ S; hð0Þ is said to be globally identifiable
ðg:i:Þ; if U ¼+; hð0Þ is said to be nonidentifiable ðn:i:Þ. If all
h 2 S are g:i:=l:i:=n:i:, f ðx; hÞ is said to be structurally
g:i:=l:i:=n:i:ðs:g:i:=s:l:i:=s:n:i:Þ.

Remark 1. Note that s.i. presents a necessary not sufficient
condition for realizing parameter estimation. An s.i. model
is in fact only potentially identifiable in the sense that it
does not guarantee success of estimation [6,26]. In fact,
attempts to identify s.i. models may fail because of
various reasons, e.g., missing data, contamination noise,
imprecise estimators, etc. However, these factors should
in no way detract from the necessity of satisfying the prior
re of generalized constraint neural network (GCNN) model: composed of

-model, which are interactively coupled.



ARTICLE IN PRESS
S.-H. Yang et al. / Neurocomputing 72 (2008) 392–400 395
s.i. requirement, because the most essential reason for
nonidentifiability is inherent in the model itself, and bad
experiments or poor estimators only makes matter worse.
Even with good experiment designs, abundant data and
highly precise estimators, it is still impossible to get
reasonable estimations for s.n.i. models.

An important tool in testing identifiability is the Fisher’s
information matrix (FIM), i.e.,

FIM :F ¼ E
q log f

qyi

�
q log f

qyj

� �� �
p�p

. (1)

Rothenberg [22] studied the identifiability of the general
parametric models based on examining the rank of the
FIM. They proved that under weak regularity conditions
local identifiability is equivalent to nonsingularity of the
FIM. They also established criteria to test global identifia-
bility for exponential family PDF models. Hochwald and
Nehorai [16] studied the connection between identifiability
and regularity of the FIM for Gaussian PDF model and
established a tool to check regularity based on holo-
morphic functions.

Structural identifiability is an intrinsic property of the
model. The most obvious cause of s.n.i. is over-parameter-
ization, or parameter redundancy. If a model is parameter
redundant, the likelihood surface will be maximized along
a completely flat ridge or plane for any data set [6].
Therefore, parameter redundant models are certainly s.n.i.

Definition 2 (Parameter redundancy). The model f ðx; hÞ is
said to be parameter redundant if it can be expressed in
terms of a smaller parameter vector b ¼ ðb1;b2; . . . ;bqÞ,
where qop.

Catchpole and Morgan [6] studied the connections
between parameter redundancy and s.i. They established
necessary and sufficient conditions for parameter redun-
dancy of exponential family PDF models. For a general
class of nonlinear models, parameter redundancy is
equivalent to the singularity of the FIM and can be tested
in terms of rank deficiency of the DM (i.e., Jacobian of the
mean vector), which is defined as Eq. (2). They [7] also
established an approach to determine which combination
of parameters may be estimated when a model is parameter
redundant, which requires the calculation of the DM and
its null space:

DM : D ¼
qmi

qyj

� �
p�n

, (2)

where ðx1; x2; . . . ;xnÞ is a data vector from the exponential
family PDF f ðx; hÞ; mi ¼ E½xi] is the mean of xi.

There also exists computer software for examining
identifiability, which is based on either numerical or
symbolic computation. Numerical packages, which calcu-
late the FIM at the maximum likelihood parameter
estimate and numerically estimate the eigenvector (e.g.,
by singular value decomposition) to judge singularity by
the existence of zero eigenvalues. In contrast, symbolic
algebra computer packages [8,9], usually based on the
software Maple, test parameter identifiability based on the
symbolic algebraic computation, thus are not vulnerable to
numerical errors and are irrespective of the extent of the
data set.
However, these methods are not appropriate for

applications in GCNN models: (i) the GCNN model is
static (no time-variation exists in general), thus methods in
the noise-free framework for dynamic models cannot be
used (e.g., we cannot apply Laplacian transformation [19]
to a static model); (ii) as for the GCNN model, we care
more about the identifiability of models (i.e., s.i) rather
than of parameter points, and want to rule out s.n.i. models
before experiment design and data collection. However,
most of the criteria in the stochastic framework (e.g., the
methods based on FIM) are based on the data set and are
originally established to test identifiability of certain
parameter points; (iii) although the algebraic approach [6]
does not have the above limitations, it cannot directly be
applied either, because it checks parameter redundancy by
the row rank deficiency of the DM, which has only one
column for the GCNN models so that the rank equals to
either one or zero.

4. A functional framework for static deterministic models

In this section, we present a functional framework for
static deterministic functional models. In this framework, it
is assumed that the model is static and noise free. In other
words, the model y ¼ f ðx; hÞ is simply a parameterized
deterministic nonlinear function. The definition of (struc-
tural) identifiability is the same as that in Section 2 with an
exception that f ðx; hÞ is not a PDF model.
We concern another cause of s.n.i, which we term as

parameter dependence in the sense that there exists a lower
ordered subspace (a manifold) of S such that every
parameter point in this subspace is equivalent to each other,
i.e., f ðx; hÞ is invariant of h when the (subset of) parameters
change their values along the manifold. We will link this new
concept of parameter dependence to the commonly used
ones in literature, such as parameter redundancy and s.i. In
addition, we will show that several interesting results and
useful tools can be derived from this concept, which may not
have been achieved by other existing ones.
Denoting yi the ith component of the parameter vector h

and SðyiÞ its value space, we first introduce the new concept
of parameter dependence as follows.

Definition 3 (Observational equivalence). Two model
f ðx; hÞ and gðx;bÞ are said to be observationally equivalent
if for any parameter point hð0Þ, there exists a bð0Þ such that
f ðx; hÞ ¼ gðx; bÞ holds for all x 2 Rn.

Definition 4 (Dependent parameter pairs). For y ¼ f ðx; hÞ,

if for any given yð1Þ1 , yð2Þ1 2 Sðy1Þ and yð1Þ2 2 Sðy2Þ, there

always exists yð2Þ2 2 Sðy2Þ such that f ðx; hjy1 ¼ yð1Þ1 , y2 ¼

yð1Þ2 Þ and f ðx; hjy1 ¼ yð2Þ1 , y2 ¼ yð2Þ2 Þ are observationally
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equivalent, then y1 is said to be dependent on y2. The two
parameters y1 and y2 are defined as dependent parameter
pairs, if one of them is dependent on the other.

Definition 5 (Parameter dependence). A model y ¼ f ðx; hÞ
is said to be with dependent parameters if it contains at
least one dependent parameter pair.

We now investigate the connections of parameter
dependence with s.i and parameter redundancy. The
relationships can be described by the following two
theorems.

Theorem 1. A model with dependent parameters is s.n.i.

Proof. Suppose y1 and y2 are the dependent parameter
pairs in f ðx; hÞ, denote the parameter vector composed of
the remaining parameters as hR. Then according to

Definition 4, if ðyð1Þ1 ; y
ð1Þ
2 ; h

ð0Þ
R Þ is an estimation for h, so is

ðyð2Þ1 ; y
ð2Þ
2 ; h

ð0Þ
R Þ. Because yð1Þ1 , yð1Þ2 , h

ð0Þ
R and yð2Þ1 are arbitrary,

f ðx; hÞ is s.n.i. &

Theorem 2. A model with dependent parameters is para-

meter redundant. Particularly, if y1 and y2 are two

parameters of f ðx; hÞ and y1 is dependent on y2, then there

exists yð1Þ1 2 Sðy1Þ such that f ðx; hjy1 ¼ yð1Þ1 Þ is observation-

ally equivalent to f ðx; hÞ.

Proof. Since y1 is dependent on y2, according to Definition
4, for any given yð1Þ1 2 Sðy1Þ, y

ð1Þ
2 2 Sðy2Þ and yð2Þ1 2 Sðy1Þ,

there always exists a yð2Þ2 2 Sðy2Þ such that f ðx; hjy1 ¼ yð1Þ1 ,

y2 ¼ yð1Þ2 Þ and f ðx; hjy1 ¼ yð2Þ1 , y2 ¼ yð2Þ2 Þ are observationally
equivalent. Informally, let us denote this relationship as a

function gð�Þ, i.e., yð2Þ2 ¼ gðyð1Þ1 , yð2Þ1 , yð1Þ2 Þ. Suppose hð0Þ is an

arbitrary parameter point with y1 ¼ yð0Þ1 , y2 ¼ yð0Þ2 and

hR ¼ h
ð0Þ
R , then obviously f ðx; hjy1 ¼ yð0Þ1 , y2 ¼ yð0Þ2 ; hR ¼

h
ð0Þ
R Þ and f ðx; hjy1 ¼ yð1Þ1 , y2 ¼ yðgÞ2 ; hR ¼ h

ð0Þ
R Þ are observa-

tionally equivalent, where yðgÞ2 ¼ gðyð0Þ1 , yð1Þ1 , yð0Þ2 Þ. Since,

in gðyð0Þ1 , yð1Þ1 , yð0Þ2 Þ, yð0Þ1 and yð0Þ2 are arbitrary, yðgÞ2 is an

arbitrary value, too. Considering hð0Þ is arbitrary, therefore,
f ðx; hjy1 ¼ yð1Þ1 Þ is observationally equivalent to f ðx; hÞ. &

From Theorem 2, we can see that parameter dependence
is a sufficient condition for parameter redundancy. In
addition, this theorem also provides a feasible way for
reparameterization, i.e., how to eliminate redundant
parameters if the model contains dependent parameters.
This is obviously an advantage of examining parameter
dependence rather than parameter redundancy, since
testing parameter redundancy tells nothing about how to
reparameterize the model, and thus extra procedures,
which can be very complicated and time-consuming,
usually need to be carried out [6] when redundancy is
Fig. 2. The relationships among dependent parameter pairs, parameter d
detected. In contrast, examination of parameter depen-
dence allows us to detect potential deficiency inherent in
the model and at the same time provides a natural way to
reparameterize it when dependence is detected.
Theorem 1 can also be derived from Theorem 2, since it

has been proved [6] that parameter redundancy is a
sufficient condition of s. n. i. The clear relationships among
dependent parameter pairs, parameter dependence, para-

meter redundancy and s. n. i can be seen from Fig. 2.
We now investigate how to detect parameter redundancy

and dependence based on the functional framework. In
particular, we present a theorem offering a necessary and
sufficient condition of parameter redundancy. A corollary
following this theorem provides a sufficient condition of
parameter dependence.

Theorem 3 (Examination of parameter redundancy for

SISO models). Suppose an SISO nonlinear function, denot-

ing by y ¼ f ðx; hÞ is differentiable with respect to both x and

h. Define a determinant H as Eq. (3), we have:
The model y ¼ f ðx; hÞ is not parameters redundant if and

only if there exists an open neighborhood in which Ha0.

H ¼

qf

qy1

qf

qy2
� � �

qf

qyp

qf ð1Þ

qy1

qf ð1Þ

qy2
� � �

qf ð1Þ

qyp

..

. ..
. ..

. ..
.

qf ðp�1Þ

qy1

qf ðp�1Þ

qy2
� � �

qf ðp�1Þ

qyp

������������������

������������������

. (3)

Proof. (i) For sufficiency, if the model f ðx; hÞ is parameter
redundant, then it can be equivalently expressed by a
subset of the parameters. Following the chain rule for
derivatives, we have H ¼ 0.
(ii) For necessary, consider the following equations

derived from y ¼ f ðx; hÞ:

y ¼ f ðx; hÞ;

dy

dx
¼

d

dx
f ðx; hÞ;

..

.

dðp�1Þy

dxðp�1Þ
¼

dðp�1Þ

dxðp�1Þ
f ðx; hÞ:

8>>>>>>>><
>>>>>>>>:

(4)

Take derivatives (Jacobians) with respect to h for each
question, we have the following first-order differential
equations:

dg ¼M � dh, (5)

where c ¼ ðy; y0; . . . ; yðp�1ÞÞT, h ¼ ðy1; y2; . . . ; ypÞ
T.
ependence, parameter redundancy and structural nonidentifiability.
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Since there does not exist any neighborhood in which
Ha0, then we can find a series of neighborhoods which
cover the whole value space S and in every such
neighborhood H ¼ 0 holds nontrivially. Therefore, the
solution of equation Eq. (5) is either not existing or
not unique. Considering that the series of neighborhoods
cover S; h is s.n.i. For each such neighborhood,
since H ¼ 0, the columns of M are not linearly indepen-
dent, i.e., (at least) one of the columns can be expressed
by the linear combination of others. Hence, the
general solution of equation (5) can be expressed by (at
most) p� 1 parameters, the parameters in f ðx; hÞ are
redundant. &

Lemma 1. The parameters a and b in the function y ¼

f ðx; a; b;CÞ (where C is the set of the rest parameters) are

independent of one another if and only if there exists a

neighborhood of ðx; a; bÞ in which the determinant defined in

(9) does not equal to zero:

H ¼

qf

qa

qf

qb

qf 0

qa

qf 0

qb

��������

��������
. (6)

Theorem 3 and Lemma 1 provide a feasible criterion for
checking parameter redundancy and the existence of
dependent parameter pairs. According to Definition 5,
Lemma 1 also provides an approach to detecting parameter
dependence, i.e., the existence of dependent parameter
pairs is a sufficient condition for parameter dependence. In
addition, together with Theorem 2, they enable us to detect
deficient model structure and at the same time to
reparameterize the model by pairwisely examining and
eliminating dependent parameter pairs, that is, to use
Lemma 1 to pairwisely detect dependent pairs, and then
eliminate them by Theorem 2. Unfortunately, at this
point, we has only achieved a partial solution for SISO
models.

Example 1. An obvious example of parameter dependence
is y ¼ f ðx; uða; bÞ;CÞ, where the parameters a and b present
in the model only through an arbitrary function uða; bÞ,
e.g., y ¼ aebx and y ¼ ðaþ bÞx. Following Lemma 1, this
Fig. 3. Improper choice of activation functions for neural networks can resu

function (RBF) neural network is employed as the sub-model of generalized

structurally nonidentifiable; (b) when feed-forward network (FFN) sub-model
can be easily verified since

H ¼

qf

qa

qf

qb

qf 0

qa

qf 0

qb

��������

��������
¼

qf

qu
�
qu

qa

qf

qu
�
qu

qb

qf 0

qu
�
qu

qa

qf 0

qu
�
qu

qb

��������

��������
� 0.

Example 2. In [18], a hybrid radius basis function (RBF)
NN (Fig. 3(a)), which can be formulated as Eq. (7), is
applied to a benchmark nonlinear regression problem [1].
In this GCNN model, the sub-model gðx; aÞ ¼ e�ax is
partially known and associated with the RBF NN sub-
model h1ðx; hhÞ in a multiplication configuration, where a is
a physically interpretable parameter (i.e., the damping
coefficient), which is of interest to estimate since its value
reflects the level of the energy dissipation in the target
system. All parameters, including the physically based
parameter a, were learned simultaneously in this example.
Although higher accuracy was obtained by GCNN in
comparison with other models due to the utility of prior
knowledge, it was also observed, through numerical
simulations, that it is impossible to obtain a reasonable
estimation for the practically important parameter a. In
this example, we will rigorously prove that this model is
actually structurally nonidentifiable. Note that the struc-
tural identifiability analysis enables us to detect and rule
out deficient model structure before any implementation of
simulations:

y ¼ gðx; aÞ � h1ðx; hhÞ ¼ e�ax
X

i

wi exp �
ðx� ciÞ

2

s2i

� �
. (7)

For simplicity, let us just consider one term which can be
rewritten as below:

f ðxÞ ¼ e�axwe�ðx�cÞ2=s2 ¼ signðwÞ � eln jwj�ax�ðx�cÞ2=s2 . (8)

Note that the exponential term is a quadratic polynomial
which can have three independent parameters at most
while in Eq. (8) there are four, so intuitively they are
redundant. We shall prove this by using Theorem 3.

Proposition 1. The model in Eq. (8) is parameter redundant.

Proof. We use the Maple package (version 9.5) to prove
this proposition. The complete code is given in Table 1.
lt in severe ill-conditioned problems for learning: (a) when radius basis

constraint neural network (GCNN) (Example 2), the hybrid model is

is employed (Example 3), the defects are avoided.
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Table 1

Maple commands for Propositions 1 and 2

Proof for Proposition 1

with(VectorCalculus):

f :¼ w � expð�1 � a � x� ðx� cÞ^2=ðs^2ÞÞ;
Jacobian([f,diff(f,x$1),diff(f,x$2),diff(f,x$3)],[a,w,s,c],’determinant’);

Proof for Proposition 2

with(VectorCalculus) :
f:=w*exp(-1*a*x)/(1+exp(-1*r*x-b));

Jacobian([f,diff(f,x$1),diff(f,x$2),diff(f,x$3)],[a,w,r,b], ’determinant’);
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We have

Hf ¼

qf

qa
qf

qw

qf

qs

qf

qc

qf 0

qa
qf 0

qw

qf 0

qs

qf 0

qc

qf ð2Þ

qa
qf ð2Þ

qw

qf ð2Þ

qs

qf ð2Þ

qc

qf ð3Þ

qa
qf ð3Þ

qw

qf ð3Þ

qs

qf ð3Þ

qc

�����������������

�����������������

¼ 0 (9)

therefore, according to the theorem, the parameters a;w; s,
and c in model Eq. (7) are redundant. &

Example 3. Consider the example above again, but instead
of using RBF-NN, we now use sigmoid feed-forward
perceptrons, h2ðx; hhÞ, as the NN sub-model (see Fig. 3(b)).
Then, the corresponding GCNN model is given by

y ¼ gðx; aÞ � h2ðx; hhÞ ¼ e�ax
X

i

wi

1

1þ e�gix�bi
, (10)

where gi is the input layer weights and bi is the bias
parameter. We will show that the nonidentifiability issue
will be avoided if we use a different type of NN model.
Similarly, let us consider the model below for simplicity:

f ðxÞ ¼
we�ax

1þ e�gx�b
. (11)

Proposition 2. The model in Eq. (11) is not parameter

redundant.

Proof. The Maple code is also given in Table 1. The result
is

Hf ¼
w3g4 expð�4ax� 2gx� 2bÞ

ð1þ expð�gx� bÞÞ8
.

Hf ¼ 0 occurs if and only if wg ¼ 0. Therefore, there does
not exists any neighborhood for Hf ¼ 0. Hence the model
in Eq. (11) is not parameter redundant. &

The two examples above illustrate that inappropriate
model selection, e.g., improper choice of activation
functions for NNs, can result in severe ill-conditioned
problems for learning (i.e., the parameters may never be
estimated reasonably no matter how much data is given).
On the other hand, it indicates that the illposedness can be
possibly eliminated by using another type of activation
functions when deficiency is detected in the model.

5. Parameter redundancy in isotropic Gaussian conditional

distribution models

The GCNN model estimates the parameters by mini-
mizing the mean square error (MSE) on the training set,
which is equivalent to MLE of a Gaussian-noise con-
taminated model [4,13]. This interpretation allows us to
treat the GCNN model as the mean function of a Gaussian
conditional distribution model in Eq. (12) and to deal with
the problem within the stochastic framework:

Pðy jxÞ ¼Nðyjf ðx; hÞ;s2Þ. (12)

However, the existing criteria in this framework cannot be
used directly to test s.i of this model. For example, the
algebraic approach to checking parameter redundancy
proposed by [6] is based on the DM. As for the conditional
distribution model in Eq. (12), checking parameter
redundancy by the row rank deficiency of the DM is not
appropriate since it has only one column for this type of
model.
According to [22], Eq. (12) is a type of one-dimensional

reduced form model in the sense that the distribution
depends on the parameters only through a reduced form
parameter which completely characterizes the distribution.
In exponential family distributions, this reduced form
parameter is the sufficient statistic. In particular, since the
conditional distribution model in Eq. (12) is isotropic, it
depends on the parameters h solely through the conditional
mean f ðx; hÞ. Therefore, the identification of h depends
solely on the properties of the mapping f ðx; hÞ. Based on
this notion, we define a DFV to tackle the parameter
redundancy of the conditional distribution model. The
DFV is nothing but a modification of the DM, i.e.,

DFV : d ¼ 5hf ¼
qf

qyi

� �
p�1

. (13)

Accordingly, the symbolic deficiency of the DM is modified
to symbolic linear dependence, which is defined as follows.

Definition 6 (Symbolically linear dependence). The DVF is
said to be symbolically linear dependent if there exists a
vector function lðhÞ, nonzero for all h 2 S, such that
lðhÞTdðhÞ ¼ 0.

To check parameter redundancy of the conditional
distribution model, we have the following theorems.

Theorem 4. A model is parameter redundant if and only if its

DFV is symbolically linear dependent.

Proof (Catchpole and Morgan [6]). For necessity, suppose
f ðx; hÞ is parameter redundant, i.e., it can be rewritten as
f ðx;bÞ, where b ¼ ðb1; b2; . . . ;bqÞ. Since qop, following the
chain rule for derivatives, dðhÞ is obviously linear
dependent.
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For sufficiency, suppose there exists a vector function
kðhÞ, nonzero for all h 2 S, such that kðhÞTdðhÞ ¼ 0. This
implies a linear first order Lagrange partial differential
equation with auxiliary equations [14]:

dy1
l1ðhÞ

¼
dy2
l2ðhÞ

¼ � � � ¼
dyp

lpðhÞ
. (14)

Eq. (14) in general has p� 1 solutions. Since the distribu-
tion is isotropic, which depends on h solely through
f ðx; hÞ [22], therefore, the parameters in Eq. (12) are
redundant. &

We now give some examples to illustrate the application
of Theorem 4 in testing parameter redundancy in GCNN
models, and more generally, in regression models.

Example 4. The first example is linear basis function
models for regression [4], i.e.,

f ðx; hÞ ¼
Xp

i¼1

yifiðxÞ, (15)

where fið�Þ are known as basis functions or feature maps.
For this type of models, since the DFV is the basis function
vector ðf1ðxÞ; . . . ;fpðxÞÞ, the model is not parameter
redundant if and only if the basis functions are symboli-
cally linear independent, which is consistent with our
intuition. In fact, according to Theorem 4 here and
Theorem 5 in [22], it is easy to verify that the model in
Eq. (15) is structurally identifiable if and only if its basis
functions are independent of each other, which coincides
exactly with a result given in [17].

Example 5. This example comes from [23], where

f ðx; hÞ ¼ e�y2y3x1 þ
y1
y2
ð1� e�y2y3x1Þx2. (16)

It can be easily verified that for any constant ca0, ðy1; y2; y3Þ
and ðcy1; cy2; y3=cÞ are observationally equivalent.

The DFV for Eq. (16) is

d ¼

1

y2
ð1� e�y2y3x1Þx2

y1
y2
y3x1x2 � y3x1 �

y1
y22

x2

 !
e�y2y3x1 �

y1
y22

x2

ðy1x1x2 � y2x1Þe
�y2y3x1

0
BBBBBB@

1
CCCCCCA
. (17)

Solving kðhÞ out of lðhÞTdðhÞ ¼ 0, we have

l1 : l2 : l3 ¼ y1 : y2 : y3, (18)

that is, any vector function kðhÞ satisfying Eq. (18) will lead
to kðhÞT dðhÞ ¼ 0, thus, the DFV is symbolically linear
dependent, the model in Eq. (16) is parameter redundant.
Example 6. Consider Examples 3 and 4 again. The DFV
for Eq. (8) is

d ¼
qf

qa
;
qf

qw
;
qf

qc
;
qf

qs

� �T

¼

�wxE

E

2ðx� cÞwE=s2

2ðx� cÞ2wE=s3

0
BBBB@

1
CCCCA, (19)

where E ¼ e�ðx�cÞ2=s2�ax. Solving kðhÞ out of kðhÞTdðhÞ ¼ 0,
we have

l1 : l2 : l3 : l4 ¼ 1 : cw : s2=2 : 0. (20)

The DFV is symbolically linear dependent, hence the
model in Eq. (8) is parameter redundant. In contrast, the
DFV for Eq. (11) is

d ¼
qf

qa
;
qf

qw
;
qf

qg
;
qf

qb

� �T

/

xeax=w

�ðeax þ e�gx�bÞ=w2

�xe�gx�b=w

�e�gx�b=w

0
BBBB@

1
CCCCA. (21)

Solving kðhÞ out of kðhÞTdðhÞ ¼ 0, we have

l1 ¼ l2 ¼ l3 ¼ l4 ¼ 0. (22)

The DFV is symbolically linear independent, therefore the
model in Eq. (11) is not parameter redundant.

6. Conclusion

Testing nonlinear models for identifiability should be a
prerequisite before attempting to decide which model
structure is most appropriate and what is the best value
for the parameters on the basis of experimental data.
Otherwise, no conclusion can be drawn on the value of
some physically meaningful parameters.
This paper is a preliminary study on the structure

identifiability of the GCNN models. In particular, we have
presented a functional framework for static deterministic
nonlinear models and established a criteria for testing
nonidentifiability based on this framework. In addition,
based on the stochastic framework, we have extended the
DM-based approach to test parameter redundancy in
isotropic Gaussian conditional models in terms of the
symbolically linear dependence of the newly defined DFV.
Although this paper is focused on identifiability of the

GCNN models, the resulted methods are applicable to
more general problems, for example, the functional
framework is appropriate for any static deterministic
models, and the DFV-based methods are able to examine
parameter redundancy for any nonlinear regression models
with isotropic Gaussian noises.
The approaches presented in this paper can be easily

implemented by symbolic computation packages such as
Maple. However, identifiability of nonlinear models is still
difficult to test since, whatever the method being used, it is
required to solve a system of nonlinear algebraic equations
whose complexity increases very fast with the number of

puting 72 (2008) 392–400 399
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parameters, the dimension of the input vector, the degree
of nonlinearity, etc.

Finally, we outline two directions below for future work:
�
 Although the functional analysis approach enables us to
detect parameter dependance, it is only applicable to SISO
models in current version. It would be more reliable if we
could extend it to the more generic MIMO models. In
addition, though this approach naturally offers a way for
reparameterization by detecting and eliminating depen-
dent parameter pairs, this pairwise procedure is relatively
time-consuming (of complexity Oðp2Þ). It would be highly
desirable to seek for reparameterization methods which
operate in linear time.

�
 Another feasible way to make a structurally nonidentifi-

able model become identifiable is to augment it with
more prior knowledge, for example, to associate the
model with some constraints from domain knowledge.
This is important especially for applications where the
s.n.i. models being used are based on our incomplete
prior knowledge and thus it is impractical to reparame-
terize the model by simply eliminating redundant
parameters. Therefore, it is worthwhile considering
problems such as how many, and what types of,
constraints are required to produce a unique estimation.
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