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ABSTRACT

This paper proposes a new tracking algorithm which com-

bines object and background information, via building object

and background appearance models simultaneously by non-

parametric kernel density estimation. The major contribution

is a novel bidirectional learning framework for discrimination

between the object and background. It has the following ad-

vantages: 1) it embeds background information, unlike most

other methods that focus on the object only, 2) it provides

a mechanism to detect occlusion and distraction, which are

two main causes of tracking failure, 3) it performs feature se-

lection, making the tracker more robust to outliers. By this

learning framework, we are able to embed discriminative in-

formation into the generative appearance model. Experimen-

tal results demonstrate that the tracker is able to model drastic

appearance changes and robust to occlusion and distraction.

Index Terms— Tracking, appearance model, bidirec-

tional learning, occlusion and distraction handling

1. INTRODUCTION
Object tracking has been widely studied during the last two

decades. Generally, tracking can be formulated as how to find

the object position given the object model and how to main-

tain the object model while the appearance of the object keeps

changing. Recently, several new methods [1, 2, 3] model the

object appearance in an online manner, unlike former works

[4, 5] building the object model in advance. Jepson et al. [1]

use density estimation to model the object as a mixture of

probability distributions. The WSL tracker proposed in [1]

involves three components. Unlike the WSL tracker fixes the

number of components, Han et al. [2] build a Gaussian mix-

ture model with adaptive number of components. Besides

density estimation, Ross et al. [3] use a subspace to model

the object. The object appearance is represented as the bases

of the subspace, which are updated during the tracking pro-

cess. The ground-breaking work [6] shows the value of back-

ground information, and introduces discriminative methods

to the tracking literature. Avidan [7] uses boosting to train a

classifier which is able to distinguish object pixels from back-

ground pixels. Here the object appearance model is implicitly

maintained in the classifier.

The rest of the paper is organized as follows. In section

2, we introduce several related methods and show the differ-

ences and advantages of our approach. In section 3, we detail

the flow of our algorithm. Experimental results are given in

section 4. The paper is concluded in section 5.

2. RELATED WORKS

Appearance models in [1, 2] are both based on parametric

methods, which can only model the density distribution of

limited structure. In order to enhance the flexibility of the

model, our method is based on non-parametric density esti-

mation. Another difference is that former methods [1, 2] do

density estimation for each pixel. This is suitable for track-

ing rigid objects, since it can embed spatial information in the

appearance model. But for objects that undergo drastic shape

distortion, it brings in unnecessary spatial constraint. So in-

stead of modeling the distribution of each pixel, we model

the distribution of the whole object area. Meanwhile, former

density estimation methods [1, 2] only focus on the object,

ignoring the background. In order to embed background in-

formation, our method models the appearance for both object

and background.

Since the appearances of object and background keeps

changing, we have to update the models while tracking pro-

ceeds. However, undesired updates may cause the model to

drift away from the true density distribution. Further more, if

it is left unresolved, the error will accumulate in the tracker,

and finally cause tracking failure. In order to ease this prob-

lem, we design a bidirectional learning framework for model

updating. We only select features that can help to discriminate

the object from the background and discard features that may

come from occlusion or distraction. By this way, we incor-

porate discriminative information into the generative density

estimation method.

3. TRACKING ALGORITHM

In this section, we first briefly introduce density estimation,

then we detail the flow of our tracking algorithm.
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3.1. Density Estimation

For the object and background models, we use non-parametric

density estimation, which is used in [8] for background sub-

traction. But they maintain a density distribution for each

pixel, and set equal weights to all the features in the model.

For feature extraction, we divide the object and its nearby

background area into equally sized overlapping blocks. For

each block, we compute averaged R, G, B values as a fea-

ture vector. So when a new frame arrives, we have a batch of

features. Let x1, x2, . . . , xN ∈ R
M be all the features accu-

mulated up to now, and wi ∈ R
1 the corresponding weight,

where M is the feature dimension. Given the feature set, the

probability of a feature vector xt at time t is as follows:

P (xt) =
N∑

i=1

wiK(xt − xi), (1)

where K is a kernel function, and
∑N

i=1 wi = 1, making all

the features a distribution.

Most widely used kernels are the window function, the

Epanechnikov kernel [9], the Gaussian kernel, etc. We choose

the Gaussian kernel N(0, Σ) as it can provide more accurate

density estimation, where Σ represents the kernel function

bandwidth. In order to decrease the computation burden, Σ
is assumed to be a diagonal matrix. So the probability of ob-

serving xt can be further formulated as:

P (xt) =
N∑

i=1

wi

M∏
j=1

1√
2πσ2

j

e
− 1

2

(xtj−xij)2

σ2
j , (2)

where σ2
j are the entries of matrix Σ.

We build probability density models for the object and the

background in the same way by extracting features from the

object and the background area. So for each new feature xt,

we have PO(xt), PB(xt), which indicate the probability that

the feature xt comes from the object or the background. If

there is no special instruction, we use superscripts O and B
to denote the object and the background.

3.2. Flow of the tracking Algorithm

The framework of the tracking system is shown in Fig 1, and

we summarize our tracking algorithm in Table 1. At the first

video frame I1, the tracker is initialized by hand or some re-

liable detection results. Given the object position L1 in I1,

the object and the background models are fed with features

extracted from the object area and the nearby background.

Object features {xO
i }NO

i=1 and background features {xB
i }NB

i=1

are set equal weights 1
NO and 1

NB , where NO and NB are

the numbers of features from object and background.

For each new frame It, we extract features from previ-

ous object location Lt−1, and compute PO(xi), PB(xi) for

each feature xi according to equation (2). Then PO(xi) and

PB(xi) form the object confidence map CO
t and the back-

ground confidence map CB
t , respectively. In order to balance

the weight of object model and background model, CO
t and

CB
t are normalized to the same range [0, 1]. Finally, we get

Fig. 1. The framework of the tracking system

the combined confidence map CO
t

′ − CB
t

′
, where CO

t
′

and

CB
t

′
are the normalized object and background confidence

maps. In the combined confidence map, if a feature has a pos-

itive value, it probably comes from the object, and its value

indicates the likelihood that it is from the object.

We then locate current object position Lt by seeking the

maximal value in the combined confidence map using Mean

Shift [9]. Given the object position Lt, we can label the fea-

tures as object or background. However, if we directly add

all these features to the object and background models, the

tracker may suffer from model drift, as we can not guarantee

100 percent accuracy of the tracking results. In order to make

the tracker more robust to drift, we propose the bidirectional

learning rule, which is able to detect occlusion and distrac-

tion, and selects discriminative features for model update.

The bidirectional learning rule is formulated in table 2 and

3, where PO(xi)
′

and PB(xi)
′

are the normalized probabil-

ity values. Occlusion and distraction are the two main reasons

causing tracking failure. The former can disturb the tracker by

lowering the probability values in the object area. The latter

can absorb the tracker to a feigned object, which has a simi-

lar appearance as the true object. However, the bidirectional

learning rule can help us to detect these two situations. For an

object feature, if PB(xi)
′

is much higher than PO(xi)
′
, this

shows the feature may probably come from the background

and occlude the object we want to track. For a background

feature, if PO(xi)
′

is much higher than PB(xi)
′
, this shows

the feature has a high similarity with the object and could be

a distractor for the tracker. We simply delete these kinds of

features, as they may be occlusion or distraction.

For feature selection, we need to judge the discriminative

power of a feature. We give high weights to object features

with PO(xi)
′

bigger than PB(xi)
′
, and background features

with PB(xi)
′

bigger than PO(xi)
′
. This is just a guideline

which can be quantified to more specific formulas:

wO
i = PO(xi)

′ × (1 − PB(xi)
′
), (3)
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Algorithm Tracking Using Density Estimation

Input: Video frames It, t = 1, 2, . . . , T ; Object location L1

in the first frame.

Output: Object location Lt, t = 2, . . . , T .

Initialization: For the first frame I1, extract object features

{xO
i }NO

i=1 and background features {xB
i }NB

i=1. Add these

features to the object or the background model with weights
1

NO or 1
NB .

For each new frame It, do:

1. Extract features from previous location Lt−1. For each

feature xi, calculate PO(xi), PB(xi), and create the

confidence map CO
t for object, CB

t for background.

2. Normalize CO
t , CB

t to the same range. Get CO
t

′
, CB

t
′
.

3. Run Mean Shift on the combined confidence map

CO
t

′ − CB
t

′
. Obtain current object location Lt.

4. Label the features as object or background according to

object location Lt.

5. Do feature selection using the bidirectional learning

rule. Add new features to the object and the back-

ground model.

6. Update feature weights in the models. Delete features

whose weights lower than a threshold, and normalize

the weights of all the features to a distribution.

Table 1. The tracking Algorithm

wB
i = PB(xi)

′ × (1 − PO(xi)
′
), (4)

where wO
i and wB

i are the object and background feature

weights, and the value 1 is the upper bound, when we nor-

malize the confidence maps.

After adding new features to the models, we update the

weights of previous features as follows:

wO
i

′
= βOwO

i , wB
i

′
= βBwB

i , (5)

where βOand βB are the learning rates of the object and back-

ground model. This can help the models to gradually for-

get previous features, and make a room for recent features.

Finally, we delete features whose weights are lower than a

threshold.

4. EXPERIMENTAL RESULTS
For all the experiments, we set the learning rates βO = 0.975,

βB = 0.85, as generally the background changes more fre-

quently than the object. We choose the block size for feature

extraction to be 4 × 4 with 1/2 overlapping. For the kernel

bandwidth parameters, we simply follow the empirical for-

mula in [10]: σ = θ/ log N , where N is the feature number

and θ the variance of the feature set. The width of the back-

ground area is (h + w)/2, with h and w the height and width

of the object area. The algorithm is executed on a 1.86 GHz

PC with 2G memory, and runs several frames per second.

Table 2. Bidirectional learning rule for object features

Table 3. Bidirectional learning rule for background features

We do not use any motion assumption about the object,

and the camera is not assumed to be fixed. The tracker is

initialized in the first frame by hand, then it is working on

its own. For qualitative comparison, we ran the Mean Shift

tracker [9] using the same RGB feature as our method. In all

the experiments, the object rectangle of our tracker is shown

in red color, and the background rectangle in blue color, while

the result of the Mean Shift tracker is in green color.

The first sequence is an indoor scene at the check-in of an

airport from PETS20071.Our object is the head of a woman

with a white dress, shown in Fig 2. The object undergoes

large pose variations. Our tracker is able to follow it all

along, while the Mean Shift tracker can not locate the object

accurately in frame 828 and 878. The object is occluded by

a man in frame 930, and both trackers are able to handle

this occlusion. However, when it passing by another woman

in frame1703, the Mean Shift tracker is absorbed by her

face, and loses the true target. Our tracker follows the object

through the distraction by the woman and the occlusion by the

man in frame 1712. In frame 1974 the object is completely

occluded by the man. This finally causes tracking failure.

The next sequence is from the same scene, but under a

different view. We track the head of a woman crossing the

crowd, depicted in Fig 3. Please note that the color of the

woman’s hair is similar to the color of the floor. When the

object passes by another woman with the same hair color in

frame 81, the Mean Shift tracker is completely absorbed by

this feigned target. Our tracker survives in this challenge. The

object is then occluded by a man in frame 92. Our tracker is

able to follow the object through the whole scene.

The last sequence named ”ThreePastShop1cor” is from

the CAVIAR database2 shown in Fig 4. We track the head of

a man wandering in the corridor. The main challenge is large

pose variances. The object turns left then right and meets

1ftp://ftp.pets.rdg.ac.uk
2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 2. Tracking a woman in complex background (Cropped for better view)

Fig. 3. Tracking a woman crossing the crowd (Cropped for better view)

Fig. 4. Tracking a man wandering in the corridor (Cropped for better view)

with another person. Both trackers are able to handle the pose

variations, but the Mean Shift tracker drifts away to the pillar

which has a similar color as the object in frame 263 and 273.

5. CONCLUSION

We propose a novel bidirectional learning framework which

combines the object and background information together.

The framework is able to detect occlusion and distraction,

making the tracker robust to these outliers. Moreover, we in-

corporate feature selection in the tracker, which embeds dis-

criminative information in the generative density estimation

model. Online updating of the model enables our tracker to

learn object appearance variations, and meanwhile robust to

occlusion and distraction. Experimental results show that our

method outperforms the Mean Shift tracker.
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