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Abstract. In this paper,wepropose a supervised SmoothMulti-Manifold
Embedding (SMME) method for robust identity-independent head pose
estimation. In order to handle the appearance variations caused by iden-
tity, we consider the pose data space as multiple manifolds in which each
manifold characterizes the underlying subspace of subjects with similar
appearance. We then propose a novel embedding criterion to learn each
manifold from the exemplar-centered local structure of subjects. The ex-
periment results on the standard databases demonstrates that the SMME
is robust to variations of identities and achieves high pose estimation
accuracy.

1 Introduction

Head pose estimation from images or videos is a classical problem in computer
vision [1]. Robust identity-independent head pose estimation plays a significant
role in many human-centered computing applications such as view-independent
face detection systems and multi-view face recognition systems.

After neuroscientists emphasized manifold ways of visual perception [2], many
researchers indicated that the variations of head pose can be visualized as data
points lying on a low-dimensional manifold in the image space of a high dimension-
ality [3,4]. However, how to extract effective pose features for the low-dimensional
manifold, and synchronously ignore appearance variations like changes in identity,
scale, illumination, etc [5], remain to be challenging problems due to the nonlinear
and high data dimensionality. The focus of this paper is to seek the optimal low-
dimensional manifold describing the intrinsical pose variations and to provide a
robust identity-independent pose estimator.

The changes of pose images due to identity changes are usually larger than
that caused by different poses of same person. Thus, it is difficult to obtain the
identity-independent manifold embedding which preserves the pose differences.
In this paper, we present a Smooth Multi-Manifold Embedding (SMME) method,
which considers the pose data space as multiple manifolds. Each manifold char-
acterizes the underlying subspace of the local structure of subjects with similar
appearance. We propose a novel embedding criterion to learn each manifold from
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the exemplar-centered local structure of subjects. The embedding method is su-
pervised by both pose and identity information. Each learned manifold with a
unique geometric structure is smooth and discriminative. The proposed SMME
method aims to provide intra-class compactness and inter-class separability in
low-dimensional pose space. For new images of a new subject, we first locate
their nearest exemplar, then embed them into the corresponding manifold, and
finally decide the pose angle by its k nearest neighbors in the projected subspace.

2 Related Work

The effective manifold learning methods [4,5,6,7,8] for head pose estimation seek
a low-dimensional continuous manifold, and new images can then be embedded
into these manifolds to estimate the pose. The embedding can be learned by
many approaches, such as Locally Embedded Analysis (LEA) [4], and Locality
Preserving Projections (LPP) [6]. To incorporate the pose labels that are usually
available during training phase, Balasubramanian et al. [7] presented a frame-
work based on pose information to compute a biased neighborhood. Yan et al. [8]
proposed a synchronized manifold embedding method. They all demonstrated
their effectiveness for head pose estimation. However, many methods proposed
to capture the structure of the pose manifold are local. Thus, they fail to handle
new samples without the consistent local information. In addition, they use a
single manifold to represent the pose space. In this paper, we use multi-manifold
to represent the feature space by a novel embedding method.

Several multi-subspace methods have been proposed in the literature [9,10,11].
Kim et al. [9] presented locally linear discriminant analysis for face recognition
with a single model image. Vidal et al. [10] proposed an algebraic geometric
approach to estimate a mixture of subspaces. Tipping et al. [11] proposed a mix-
ture model of probabilistic principal component analyzers for face recognition.
The parameters of the mixture model are determined using an EM algorithm.
They have high computing complexity for the iterative solution methods.

The major contribution of this paper is to introduce the Affinity Propagation
(AP) [12] method to obtain local structures of subjects with similar appearance
which are used to construct multiple manifolds. Another contribution is the
novel formation of the discriminative embedding using the exemplars solved in
a closed-form instead of a iterative method.

3 Multi-Manifold Embedding for Head Pose Estimation

Assume that the training data are X = [x1
1, x

1
2, · · · , x1

P , · · · , xS
1 , xS

2 , · · · , xS
P ]M×N ,

where xs
p ∈ RM , s = 1, 2, · · · , S, p = 1, 2, · · · , P , S is the number of subjects,

and P is the number of poses for a subject αs, and there are N = S×P samples
in total. The pose angle of the sample xs

p is denoted as βp. We aim to seeking a
discriminative embedding that mapping the original M dimensional image space
into an m dimensional feature space with m � M .
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Fig. 1. The 3-dimensional embedding of the pose data by LLE. (a) 2 subjects with
dissimilar individual appearance. (b) 2 subjects with similar individual appearance.

3.1 Motivations

The changes of pose images due to identity changes are usually larger than that
caused by different poses of same subject. Thus, for head pose estimation, it is
crucial to obtain the identity-independent manifold embedding which preserves
the pose differences. The SMME method is motivated by two observations: (1)
The appearance variations caused by identity lead to translation, rotation and
warp changes of the subject’s embeddings. Two subjects with similar individ-
ual appearance almost lie on a same continuous manifold by Locally Linear
Embedding (LLE) [13] shown in Fig. 1-(b). Otherwise, Fig. 1-(a) shows that
the embeddings may not be close from two subjects with dissimilar individual
appearance. (2) It is difficult to make sure that the pose data lie on a single
continuous manifold for the individual variations.

3.2 Smooth Multi-Manifold Embedding

Taking account of the effect caused by the appearance variations from different
subjects, we first group subjects in the training data set into clusters (represented
by their exemplar), and then seek a discriminative embedding for each cluster
supervised by both pose and identity information. Finally, we estimate the pose
by the k nearest neighbors in the low-dimensional embedding space.

Clustering Using Affinity Propagation. Frey and Dueck [12] proposed the
Affinity Propagation (AP) algorithm which is capable of finding an optimal set of
clusters with representative exemplars. Compared with other clustering methods,
AP do not preset the number of clusters and has good clustering performance.
In our scheme, AP is used to seek the local structures of subjects with similar
embeddings in the low-dimensional pose space.

For two head images xs
p and xs′

p′ , we compute the similarity as follows

sim(xs
p, x

s′
p′) = −‖xs

p − xs′
p′‖2. (1)

Then, we define the similarity of the two subjects αi and αk as

s(i, k) =
∑

p

sim(xi
p, x

k
p). (2)
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The parameter responsibility of AP can be determined experimentally by
cross-validation. The output is the clusters {X1, X2, · · · , XK} with the corre-
sponding exemplars {x1, x2, · · · , xK}. Later experiments show that each cluster
with a exemplar can be used to seek a discriminative embedding.

Embedding Method. For each local structure we seek a low-dimensional
embedding to provide intra-class compactness and inter-class separability in
the low-dimensional pose subspace. The optimization of the projection is syn-
chronous as follows: (1) Intra-class Compactness: For each pose, the projection
minimizes the distances between the embeddings of the exemplar and the other
subjects. (2) Inter-class Separability: For each subject, the projection maximizes
the distances between the embeddings of the different poses.

To obtain a low-dimensional pose space that is good for pose estimation, it
is desirable to minimize the intra-class compactness. We formulate it as the
distances between the embeddings of the exemplar and the other subjects for
each pose. Namely, we should minimize

∑

p

∑

i∈Xc

‖yi
p − yc

p‖2, (3)

where yc
p is the embedding of the head image xc

p that is the exemplar of the
cluster Xc with the pose angle βp.

At the same time, we promote the inter-class separability of different poses
by maximizing the distances between the embedding of the different poses for
each subject. Namely, we maximize

∑

s

∑

i�=j

‖ys
i − ys

j‖2Tij , (4)

where Tij is a penalty for poses i and j. We introduce a heavy penalty to penalize
the poses i and j when they are close to each other, this is given as Tij =
exp(−‖βi−βj‖2)/

∑
i exp(−‖βi−βj‖2). To combine (3) and (4) simultaneously,

we minimize the following objective

J =

∑
p

∑
i∈Xc ‖yi

p − yc
p‖2

∑
s

∑
i�=j ‖ys

i − ys
j‖2Tij

, (5)

where J is the objective to seek the embedding ys
p of the head pose xs

p.
Fig. 2 (a) shows the intrinsical embeddings from a local structure of four

subjects (three subjects denoted by circles and an exemplar denoted by star).
The optimization for the projection is to minimize the distances between the
exemplar and the other subjects with a same pose and maximize the distances
between different poses of a subject. Fig. 2 (b) shows the corresponding embed-
dings which minimized the distances denoted by the dashed lines and maximized
the distances denoted by the solid lines. The objective of the embedding is to
generate many pose clusters each corresponding to a specific pose angle.

In this paper, we employ a linear projection approach, namely, the embedding
is achieved by seeking a projection matrix W ∈ RM×m (m � M) such that
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Fig. 2. Illustration of the embedding method. (a) shows the intrinsical embeddings
from a local structure of four subjects (three subjects denoted by circles and an ex-
emplar denoted by star). (b) shows the embeddings which minimized the distances
denoted by the dashed lines and maximized the distances by the solid lines.

ys
p = WT xs

p, where ys
p ∈ Rm is the low-dimensional embedding of xs

p ∈ RM .
Then, W is obtained by the following optimization

W ∗ = argmin
W

∑
p

∑
i∈Xc ‖WT xi

p − WT xc
p‖2

∑
s

∑
i�=j ‖WT xs

i − WT xs
j‖2Tij

. (6)

It is not difficult to see that the objective function can be transformed into

W ∗ = arg max
W

Tr(WT S2W )
Tr(WT S1W )

, (7)

where Tr(·) means the trace of a square matrix, and

S1 =
∑

p

∑

i∈C

(xi
p − xc

p)(x
i
p − xc

p)
T , S2 =

∑

s

∑

i�=j

(xs
i − xs

j)(x
s
i − xs

j)
T Tij . (8)

The objective function in (7) can be solved with the generalized eigenvalue
decomposition method as S2Wi = λiS1Wi, where the vector Wi is the eigenvector
corresponding to the i-th largest eigenvalue λi, and it constitutes the i-th column
vector of the projection matrix W .

4 Experiments and Results

The proposed SMME method was validated using the FacePix database [14],
which contains 5430 head images spanning −90◦ to +90◦ in yaw at 1◦ inter-
vals. We also collected head pose images from the Pointing’04 database [15] for
testing. The images were equalized and sub-sampled to 32x32 resolution, and
preprocessed by the Laplacian of Gaussian (LoG) filter to capture the edge map
that is directly related to pose variations [7].



SMME for Robust Identity-Independent Head Pose Estimation 71

To evaluate the performance of our system, we use the Mean Absolute Error
(MAE) [1] which is computed by averaging the difference between expected pose
and estimated pose for all images. To test the generalization ability, we use the
leave-one-out strategy [8] (one subject in turn as the testing data and all the
remaining subjects for the embedding learning).

4.1 Embedding Space

We use the proposed SMME method on the data sets mentioned above to show
the embeddings. Fig. 3-(a) shows two 3-dimensional manifold embeddings from
two clusters of 4 subjects with pose variations from [−75◦ + 75◦] at 4◦ intervals.
The result has much better smoothness, intra-class compactness and inter-class
separability in the low-dimensional embedding space. And the embedding man-
ifold curves have different geometrical structures and different locations which
indicates the multi-manifold representation is benefit for pose estimation.

Fig. 3-(b) shows the distance difference between the image and embedding
space for similar poses of the same subject and different subjects with the same
pose (We fix the subject 1 with pose 30◦, and locate another points by the
distance from it). We can see that the distance between images from different
subjects with the same pose becomes less than the distance between images from
the same subject with similar poses in the low-dimensional embedding space. It
indicates that the SMME provides better discriminability for pose estimation.
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Fig. 3. Illustration of smoothness and discriminability of the embedding space. (a)
shows two 3-dimensional manifold embeddings from two cluster. (b) shows the distance
difference between the image and embedding space.

4.2 Comparison of SMME with Other Methods

We compare SMME with other pose estimation methods: the global-based PCA
method, the local-based manifold learning LPP methods [6] and Marginal Fisher
Analysis (MFA) [16] methods. Fig. 4 (a) shows the pose estimation results in
different dimensionalities. It shows that the proposed SMME method signifi-
cantly improves the estimation performance compared to other methods. Fig. 4
(b) shows the MAE with pose variations from [−90◦ + 90◦] at 1◦ intervals. The
result shows that the accuracy of the proposed SMME method is still in general
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Fig. 4. Comparison of our method against other methods. (a) The MAE in different
dimensionality. (b)The MAE under different poses.

better than other methods. We notice that the MAE curve of SMME is much
more flat than other methods within a relative wide range of the frontal view
[−50◦ + 50◦], this implies that SMME is more robust in [−50◦ + 50◦].

4.3 Robustness against Different Identities

In order to test the robustness of SMME against different identities, we use the
samples of one subject in turn as the testing data and use all the remaining
subjects for embedding learning to compute the MAE of each subjects. The
proposed SMME method achieves the average MAE of 3.64◦ and the variance
(for MAE of different subjects) of 1.13 shown in Table 1, which shows that the
SMME method can provide more robust and accurate identity-independent head
pose estimation than other methods.

Table 1. The MAE of all subjects and the variance of MAE for different subjects

Methods PCA MFA LPP SMME

MAE 5.32 5.41 4.96 3.64

Variance 4.66 4.79 3.21 1.13

5 Conclusions

In this paper, we present the SMME method for robust head pose estimation
which provides better intra-class compactness and inter-class separability in low-
dimensional pose subspace than traditional methods. For identity-independent
head pose estimation, we achieved the MAE of about 3◦ on the standard
databases, and even lower MAE can be achieved on larger data sets. In addition,
the method has been demonstrated as more robust to individual variations for
new identities than the traditional methods. In future, we plan to evaluate the
proposed method in terms of feasibility for more complex real world scenarios,
and develop auto-adaptive multi-manifold embedding method.



SMME for Robust Identity-Independent Head Pose Estimation 73

Acknowledgment

This work is supported by the National Laboratory of Pattern Recognition under
grant 09-4-1, the National High Technology Research and Development Program
of China (No. 2008AA02Z310) and 973 Program 2009CB320900.

References

1. Murphy-Chutorian, E., Trivedi, M.: Head pose estimation in computer vision: a
survey. IEEE Transactions on PAMI, 442–449 (2008)

2. Sebastian, H., Lee, D.: The manifold ways of perception. Science 290(12), 2268–
2269 (2000)

3. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

4. Fu, Y., Huang, T.: Graph embedded analysis for head pose estimation. In: Proc.
of International Conference on Automatic Face and Gesture Recognition (2006)

5. Wang, X., Huang, X., Gao, J., Yang, R.: Illumination and person-insensitive head
pose estimation using distance metric learning. In: Forsyth, D., Torr, P., Zisserman,
A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 624–637. Springer, Heidelberg
(2008)

6. Raytchev, B., Yoda, I., Sakaue, K.: Head pose estimation by nonlinear manifold
learning. In: ICPR (2004)

7. Balasubramanian, V., Ye, J., Panchanathan, S.: Biased manifold embedding: a
framework for person-independent head pose estimation. In: CVPR (2007)

8. Yan, S., Wang, H., Fu, Y., Yan, J., Tang, X., Huang, T.S.: Synchronized sub-
manifold embedding for person-independent pose estimation and beyond. IEEE
Transactions on Image Processing (2008)

9. Kim, T., Kittler, J.: Locally linear discriminant analysis for multimodally dis-
tributed classes for face recognition with a single model image. IEEE Transactions
on PAMI 27(3), 318–327 (2005)

10. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA).
IEEE Transactions on PAMI 27(12), 1945–1959 (2005)

11. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers.
Neural computation 11(2), 443–482 (1999)

12. Frey, B., Dueck, D.: Clustering by passing messages between data points. Sci-
ence 315(514), 972–977 (2007)

13. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embed-
ding. Science 290(5500), 2323–2326 (2000)

14. Little, D., Krishna, S., Black, J., Panchanathan, S.: A methodology for evaluating
robustness of face recognition algorithms with respect to variations in pose angle
and illumination angle. In: ICASSP, vol. 2 (2005)

15. Gourier, N., Hall, D., Crowley, J.: Estimating Face orientation from Robust De-
tection of Salient Facial Structures. In: VODG, pp. 281–290 (2004)

16. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and
extensions: a general framework for dimensionality reduction. PAMI, 40–51 (2007)


	Smooth Multi-Manifold Embedding for Robust Identity-Independent Head Pose Estimation
	Introduction
	Related Work
	Multi-Manifold Embedding for Head Pose Estimation
	Motivations
	Smooth Multi-Manifold Embedding

	Experiments and Results
	Embedding Space
	Comparison of SMME with Other Methods
	Robustness against Different Identities

	Conclusions


