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Abstract

Most motion-based tracking algorithms assume that ob-
jects undergo rigid motion, which is most likely disobeyed
in real world. In this paper, we present a novel motion-
based tracking framework which makes no such assump-
tions. Object is represented by a set of local invariant fea-
tures, whose motions are observed by a feature correspon-
dence process. A generative model is proposed to depict
the relationship between local feature motions and object
global motion, whose parameters are learned efficiently by
an on-line EM algorithm. And the object global motion is
estimated in term of maximum likelihood of observations.
Then an updating mechanism is employed to adapt object
representation. Experiments show that our framework is
flexible and robust in dealing with appearance changes,
background clutter, illumination changes and occlusion.

1. Introduction

Most motion-based tracking algorithms assume that ob-
jects undergo rigid motion. They constrain object pixels to
keep constant relative positions in object movement, which
is most likely disobeyed in real world.

Local invariant features achieve great success in pattern
recognition problems due to their appealing characteristics.
A detailed study about the performance of variety of local
features is given in [14]. SIFT [13] performs best among
different types of local features such as GLOH [14], shape
context [3], PCA-SIFT [11], etc. Recently developed SURF
feature [2] is a variant of SIFT and shares equal repeata-
bility, distinctiveness and robustness, but has much faster
computing speed.

In this paper, we present a novel motion-based track-
ing framework which makes no assumption of rigid motion.
Object is represented by a set of SURF features of interest.
Such a localized representation allows different parts of ob-
ject have different motions, therefore it is more flexible to
deal with object deformation and appearance changes. Fea-
ture motions are observed exactly by a feature correspon-

dence process. Object structure information is embedded
into this process to guarantee sound observation results.

A generative model is proposed to depict the relation-
ship between local feature motions and object global mo-
tion. The model has two components: consistent compo-
nent and random-walk component. A feature’s motion be-
longing to consistent component implies that it is compati-
ble with object global motion, otherwise they are irrelevant.
Parameters of the model are learned efficiently with an on-
line version of EM algorithm.

Object global motion is estimated in term of maximum
likelihood of feature motion observations, then an updat-
ing mechanism is employed to adapt object representa-
tion. While features with incompatible motion to object
global motion are discarded, newly appeared features are
incorporated into the representation to learn the appearance
changes.

The rest of the paper is organized as follows. Section 2
analyzes related work. Section 3 describes the generative
model of feature motion. Section 4 gives the tracking algo-
rithm. Experiment results are shown in section 5. Section 6
draws the conclusion on this paper.

2. Related work

Many algorithms have been proposed to estimate ob-
ject affine motion. Shi and Tomasi [15] extends Newton-
Raphson style search methods to work under affine image
transformations. They monitor the quality of image fea-
tures during tracking by using a measure of feature dissim-
ilarity that quantifies the change of appearance of a feature
between the first and the current frame. tracker pro-
posed by Allan et al. [10] combines an adaptive appearance
model with motion estimation. They model each pixel’s
wavelet response, and search object affine motion parame-
ters to satisfy a rigid correspondence between previous pix-
els and current ones. Zhang et al. [20] uses a joint position-
color representation, and designs a kernel-based similarity
measure to describ the relationship between image regions
with respect to affine transformation parameters. Similarly,
Yu and Wu [19] build a spatial-appearance model(SAM) to
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represent object and define a maximum likelihood match-
ing criterion to obtain object motion parameters. Bearing
some similarities with these algorithms, Our method differs
from them in several aspects. We represent object by a set
of local features, and allow flexible feature motions in fea-
ture correspondence process. Also, we judge the quality
of feature by its compatibility of motion with object global
motion. Bad features with incompatible movement would
be discarded from the representation, While good features
with consistent movement would be highly weighted in the
next frames. Thus, our algorithm can make robust tracking
in dealing with appearance changes and background clut-
ters.

Several papers also employ local invariant feature in their
tracking algorithms. Tang and Tao [16] present a SIFT-
based attributed relational graph(ARG) for object repre-
sent. Features which persistently appear in several con-
secutive frames are considered as stable ones and used to
construct the graph, while features which never matched in
several consecutive frames are considered as inactive ones
and are deleted from the graph. However, such stable fea-
tures are always rare in real cases due to object appearance
deformation or illumination changes, which has been illus-
trated in our experiment. Tran and Davis [18] model ob-
ject motion and background motion in pixel-level by feature
matching on a frame-to-frame basis. An occupancy map is
maintained to stand for where the object is. More simply,
Donoser and Bischof [7] tracks a single maximally stable
extremal region(MSER) feature. Compared with these al-
gorithm, our tracking framework works on a sophisticated
feature motion generative model, which focuses on build-
ing the relationship between local feature motions and ob-
ject global motion. Experiment results demonstrate a better
performance of our tracker.

3. Feature Motion

In the paper, SURF feature is represented as
where is the 2-D position of the feature in

the image coordinate, is the feature scale, is the average
value in feature area, is the 128-bin oriented Haar

response histogram.

3.1. Generative Model

we first introduce the generative model of a single fea-
ture motion observation, , at time . Since
we should not expect that object undergoes no deforma-
tion and follows a rigid motion during tracking, our gen-
erative model consists of two components. The first one is
the consistent component, which aims to capture the agree-
ment relationship between local feature’s motion and object
global motion. In particular, assume that a feature motion
observation generated by the consistent component, we

model the probability density for by the Gaussian density
c . Here c denotes the object motion parame-

ter at time , and is a fixed empirical covariance matrix.
The second component of the model is to express the

irrelevance of some feature motion observations with ob-
ject global movement. Such irrelevance would be brought
to the system by observation noise, or by the case that cer-
tain parts move incompatibly with the whole object, such as
arm swings backward when body moves forward. We refer
to this component as a random walk process, and the proba-
bility density for a observation generated by this compo-
nent, , is taken to be a uniform distribution over the
observation domain.

These two components are combined in a probabilistic
mixture model for a feature motion ,

c m c (1)

where m are the mixing probabilities for
this feature at time . It is important to notice that the mixing
probabilities reveals how likely a feature’s motion is consis-
tent with the object global motion.

3.2. On-line Learning

In this section, an on-line EM algorithm is developed to
learn mixture model parameters m .

We first introduce a temporal window function, which
gives an exponential envelope located at the current time,

( ) , for . Here, ,
where is the half-life of the envelope in frames, and

1 , so the envelope sum to . Under
such an envelope, recent observations are given more con-
sideration than remote ones. The log-likelihood of the ob-
servation history, v =0, weighted by the envelope
function is:

L v m c
=0

m c (2)

where m denote the mixture model parameters relevant
to the observations under the temporal support envelope

.
In the standard EM algorithm, which intend to maxi-

mize the log-likelihood =0 , given a current value
for m , the E-step calculates the ownership probabilities to
mixture components for each observation :

m c
m c

(3)

for . Conditioned on these ownerships, the M-
step then provides new maximum likelihood estimates for
the parameters m by:

=0

(4)
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for . Here a normalization constant, which makes
the mixing probabilities sum to one, is omitted.

This EM algorithm works under the assumption that
all observations from previous time be stored to compute

, which is impractical for an on-line approach. As
mentioned above, the mixing probabilities stand for the con-
sistency of this feature’s motion to object global motion,
and thus change slowly through time. In the temporal win-
dow, we could make approximation and exploit a recursive
formula to execute EM algorithm on-line:

=0

1

=0

1 (5)

where
1

denotes a learning rate. In the last step,
an approximation

1 1 is used. With this online
EM algorithm, mixture model parameters could be updated
efficiently.

3.3. Feature Correspondence by Graph Matching

Observing Features’ motions could be formulated as fea-
ture correspondence in two feature sets. Let be the set of
object features of interest in frame , and be the set
of features detected from frame . If a matching between
them, , is determined, motion of a feature
in the set could be obtained by ( ) , where

is the position part in the feature descriptor, and
denote the corresponding feature of in feature set .

Since the distinctiveness of SURF descriptor would be
inadequate to provide sound matching result in complicated
situation, object structure information should be taken into
account in feature corresponding process, which lead us to
graph matching technique. Graph matching is a challenging
optimization problem which received considerable attention
in the literature [12, 8, 5, 6, 17]. In this paper, feature corre-
spondence is formulated as a matching energy minimization
problem, and a dual decomposition approach is employed
to search for a global optimal matching result. Technical
details is referred to [17].

4. Object Tracking

Object global motion is modeled as a 2-D affine trans-
form, c , where is the spatial trans-
lation, and describe the rotation and scale changes,
respectively. Given the transform c , the expectation of
the motion of feature located at is a vector,
w c , pointing from its original position to new

Algorithm 1 SURF Tracking Algorithm

Input: video frames 1

Ellipse 1 of object in first frame
Output: Ellipses 2

Initialization(for frame 1):

Initialize list by features extracted in area of 1

with initial mixture parameter m .

For each new frame do:

Extract features in and around the area of 1, and
preserve in list .

Do feature corresponding between sets and
to detect features’ motions .

Evaluate object motion c with by Equation 7.

Object new position w c 1 .

Update each feature in list :

– Update ’s descriptor and model pa-
rameter m by Equation 5, if detected.

– Update ’s position by motion , down-
weight its with factor (keep

), if not detected.

– Add newly appeared features(from list and
in the area of but not matched).

– Check all features and abandon those with
lower than an empirical threshold .

position. Here, w is the warp function. And the probabil-
ity density of observing its motion under the consistent
model is Gaussian function which centered at with co-
variance matrix . To find an optimal transform c we
maximize the sum of the observation log likelihood on the
matched feature pair set :

( )

( )

c m 1

(6)
Here we impose on c no priors such as slow motion, small
acceleration, since we found in our experiments that any
such prior would turn into a nuisance in videos shot by a
shaky camera. To evaluate c we apply the extension of EM
algorithm described in [9], which suggests an iterative way
and guarantee to increase the log likelihood for Gaussian
distributions at each iteration. Excluding the full details for
brevity, we just outline the E-step and M-step. In E-step, the
“ownership probabilities” is calculated for the motion

of each feature in , as in Equation 3.
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In the M-step, we use these ownership probabilities to build
a linear system for the update c :

( )

1 c (7)

where is the derivative of w c with respect to c , and
equals to . The details of our method is given

in Algorithm 1.

4.1. Occlusion

Previously proposed tracking algorithm would be chal-
lenged in the case of occlusion. When object is partially
or completely occluded, updating mechanism would admit
background SURF features in object region to be added into
object representation as newly appeared object features. In
next frames, motion observations of these background fea-
tures would disturb the tracker to make correct estimation
on object global motion, and result in tracking failure.

A direct solution is that we monitor background features
as well as object features. Specifically, a set of SURF fea-
tures extracted from object surrounding is maintained to
model the background. As object feature set, this back-
ground feature set also takes part in feature correspondence
process, and is updated frame by frame. Thus, when ob-
ject is occluded, background features detected in object re-
gion will be matched with features in background feature
set, since they has been previously added into background
feature set in several frames before. This strategy helps our
tracker overcome short term occlusion, also enable us to
detect occlusion actively: when newly detected SURF fea-
tures, which matched with previous background features,
are found in object region now, an occlusion is most likely
occurring. Experiments were conducted to approve our so-
lution to occlusion.

5. Experiment

We implement our algorithm with the OpenCV library.
On Pentium-4 3.0GHZ machine, averagely, the compu-
tation time is less than 120ms for single frame of size
640 480. The empirical parameters in the algorithm are
well selected and all fixed in our following experiment.
Typically, the initial mixture model parameters are set to
m , and the abandon threshold is .
We demonstrate the performance of our algorithms through
a number of video sequences, and receive promising results.

In the first experiment, we track a calendar moved by hu-
man hand. The calendar undergoes translation, scaling and
rotation in the sequence. our tracker collects the motions of
SURF features of the calendar, and then estimates its global
motion. Figure 1 gives tracking results for some frames in
this 180-frame sequence, and it is shown that our tracker
catches exactly the calender’s motion.

In the second sequence, we track a pedestrian walk-
ing on the playground. When this pedestrian walks out
of the building shadow, the illumination on her has greatly
changed. Still, our tracker successfully follows the pedes-
trian through the whole sequence. Figure 2 shows several
tracking results of this 67-frame sequence. Note that, even
though illumination on the object has steeply increased,
some SURF features, such as feature on head, remain de-
tected and make tracking stable.

The third experiment is to illustrate the capability of
our tracker to deal with background clutter. Most of
appearance-based tracking algorithms fail to follow the ob-
ject in such case because the complexity of background
would lead the appearance model to drift away from the
true one . In this sequence, a girl in white cloth runs in
front of her schoolmates who are also wearing white school
suits, drastic appearance changes and motion blurs occur
due to both object moving and camera floating. Figure 3
shows several tracking results of our algorithm and ensem-
ble tracking [1] for comparison. The ensemble tracker tries
to adapt classifiers to catch up appearance changes, but it
turns to wrong target, the girl’s trousers, as the confidence
maps shown. One reason for its failure is that pixels with
similar color in the background is hard to distinguish from
pixels in object, which makes its classifiers drift away. An-
other reason is that ensemble tracker drops object structure
information during classification, so it could not adapt well
to the dramatic appearance changes. In contrast, our tracker
works well in this situation. Intuitively, we display features’
life-span distribution of this sequence in Figure 4. The phe-
nomenon that most features suffer from short life-span, re-
veals the fact that most features become demoded quickly
in fast appearance changes. Even so, feature corresponding
process encapsulates object structure information in match-
ing to guarantee most of correct motion observations, and
generative model exactly depicts the relationship between
local features’ motions and object global motion. We still
have many long-lived features due to the high repeatability
and robustness of SURF feature, which contribute a lot to
the stableness of our tracker.

The fourth experiment aims to illustrate our tracker’s
ability to handle several challenging situations together. In
this sequence, a school girl is running in playground. The
background is crowded by many school students with sim-
ilar appearances. In this sequence, drastic motion blur and
appearance deformation also occur, and the girl is occluded
by her teacher for several frames. Figure 5 shows some
tracking results of this 100-frame sequence, which illustrate
that our tracker still works stably and accurately when these
challenging situations happens together. Here, the sum of
area of background features in object region is calculated
and its ratio to the whole object region area is used as an
occlusion indicator. When object is occluded, background
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(a) (b) (c) (d) (e)

Figure 1: Tracking calendar. By monitoring its SURF features, our tracker catches exactly the motion of the calendar, which
undergoes translation, rotation and scaling. Tracking results of frames 30, 79, 89, 132 and 141 are shown. Green and blue
ellipses stand for object position in previous frame and current frame, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Tracking human in illumination changes. When the pedestrian walks out of the building shadow, the illumination
on her has steeply increased. Still, our tracker successfully follows the pedestrian through the whole sequence. Frame 22,
37, 39, 43, 46, 48, 51 and 58 are shown. Red and blue ellipses stand for object position in previous frame and current frame,
respectively. Green lines denote feature motion observations.

features are found in object region. Tracking results of
frames 89, 91, 92 show that such an indicator exactly re-
sponses with occlusion.

6. Conclusion

we present a novel motion-based tracking framework.
Object is represented by a set of SURF feature of interest.
Feature motions are observed exactly by a feature corre-
spondence process. A generative model is proposed to de-
pict the relationship between local feature motions and ob-
ject global motion. And object affine motion parameter is
estimated in term of maximum likelihood of feature motion

observations. Then, an updating mechanism is employed
to adapt object representation. Experiments show that our
framework can get reliable tracking under dramatic appear-
ance deformation, background clutter, illumination changes
and occlusion.

However, the performance of our framework is degraded
if too few features are detected on object. This happens
when the object is too small or when its appearance is al-
most homogeneous(a single-color blob). In such cases, we
can simply substitute a blob tracker [4] to keep tracking
the object. Our tracker also fails in some cases that object
moves in a way much different from a 2-D affine transform,
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(b1) (b2) (b3) (b4)

Figure 3: Tracking human in background clutter. The upper row is the result of ensemble tracker. the confidence map for each
frame is attached at the left-bottom corner, which reveals that ensemble tracker fails to capture the dynamic object appearance
model in background clutter. The lower row is the result of our method. graph based feature correspondence encapsulates
object structure information in matching to guarantee correct feature motion observations in background clutter.
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Figure 4: Feauture life-span distribution in tracking. Most
features suffer from short life-span due to the dynamic
change of object appearance. Still, some long-lived features
account for the high repeatability and robustness of SURF
feature.

such as out-plane rotation. These direct the future research
to the following aspect: (1) Since features from object and
background always have different motions, motion classi-
fiers could be used to distinguish object features from back-
ground ones. Such classifiers should also be trained on-line
like that in [1]. (2) Complicated motion of object, such as
out-plane rotation, would result in dynamic shape of object.

level-set based contour evolution could be introduced into
tracking framework to handle such dynamic changes.
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