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Abstract— This paper presents a fast part-based subspace
selection algorithm, termed the binary sparse nonnegative matrix
factorization (B-SNMF). Both the training process and the testing
process of B-SNMF are much faster than those of binary principal
component analysis (B-PCA). Besides, B-SNMF is more robust
to occlusions in images. Experimental results on face images
demonstrate the effectiveness and the efficiency of the proposed
B-SNMF.

Index Terms— Fast algorithms, non-negative matrix factoriza-
tion, part-based representation, sparseness, subspace selection.

I. INTRODUCTION

SUBSPACE SELECTION is a process of choosing a
subspace from high dimensional space and projecting

samples onto the selected subspace. It not only reduces the
computational cost of data processing but also improves, in
most cases, the classification accuracy.

Subspace selection algorithms have been widely uti-
lized in face recognition, image retrieval, data de-noising,
and human gait recognition. Representative algorithms in-
clude principal component analysis (PCA) [16], Fisher’s
linear discriminant analysis (LDA) [12], general averaged
divergence analysis [22], discriminative locality alignment
[3], [9], 2-D subspace methods [1], [2], geometric mean
based discriminative subspace selection [10], Laplacianfaces
[5], simplexization [8], general tensor discriminant analysis
(GTDA) [11].

Recently, endeavor has been done to speed up both the
training process and the projection step [4], [6], [7]. As an
enhanced version of LDA, spectral regression discriminant
analysis (SRDA) [4], [7] reduces the computational cost of its
training process by casting the linear discriminant analysis into
a regression framework with the help of spectral graph analysis
[9]. Instead of focusing on the speed of training process,
binary principal component analysis (B-PCA) [17] aims to
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speed up the projection process. To see the advantages of B-
PCA, let us investigate the computational cost of projecting
a vectorized testing image x ∈ RD×1 onto a principal vector
u ∈ RD×1 of PCA, where D = w×h equals to the number of
image pixels and w is the image width and h the height. The
projection process uT x needs D floating point multiplications
and D − 1 floating point additions. The time T for projecting
the image onto N base vectors (i.e. principal vectors) of
PCA is

T = N × w × h × T f m + N × (w × h − 1) × T f a

where T f m is the time occupied by a single floating point mul-
tiplication, while T f a is the time occupied by a single floating
point addition [17]. When the size of an image is large, the
size of an image database is large or computational resource
is limited, the computational cost of projection bottlenecks the
real-time applications.

BPCA [17] alleviates the computational cost problem of
PCA. As a fast implementation of PCA, B-PCA employs
Haar-like box functions to linearly represent each basis vector
that spans PCA subspace. Because the inner product of a
Haar-like box function and an image can be computed very
efficiently with the help of the integral image [20], the process
of projecting the image onto the approximated basis vectors
is very fast. The computational cost is determined by the
number of Haar-like functions and is independent of the image
size.

However, the training stage of B-PCA is too long to be
accepted, especially for large size images. It takes a great deal
of time to select a small number of Haar-like box functions,
because the Haar-like box functions have to be selected from a
huge dictionary and each selection process involves the matrix
inverse operation which is time consuming. The Haar-like box
functions can be divided into one-box functions and symmetric
two-box functions (as shown in Fig. 1). Suppose the image size
is w × h, then there are h × (h − 1)× w × (w − 1)/4 one-box
functions and h × (h + 1) × w × (w − 1)/16 symmetric two-
box functions in the dictionary. In summary, B-PCA suffers
from the disadvantages of long training time, which impedes
it from real-time applications.

In this paper, we propose a fast part-based subspace se-
lection method, which is termed the binary sparse non-
negative matrix factorization (B-SNMF). It consists of two
main advantages in comparing with B-PCA. First, both the
training speed and the testing speed of B-SNMF are much
higher than those of B-PCA. Second, B-SNMF is occlusion-
insensitive for recognition tasks while the performance of B-
PCA degenerates drastically when occlusion occurs. Specifi-
cally, we propose to select the Haar-like box functions by a
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Fig. 1. Examples of Haar-like box functions: an one-box Haar-like function
(left) and symmetric two-box Haar-like box function (right).

computationally economical “pre-filtering” step followed the
conventional matching pursuit process. Because the sparseness
of the basis vectors, fewer Haar-like box functions are required
to obtain satisfying recognition accuracies and reconstruction
error.

The rest of this paper is organized as follows: Section II
gives an introduction to NMF and SNMF (sparse NMF).
Section III presents the proposed B-SNMF. In Section IV
experiments based on the face recognition are reported. Sec-
tion V concludes the paper.

II. BRIEF REVIEW OF NMF AND SNMF

B-SNMF incorporates merits from the non-negative matrix
factorization (NMF) [15] and the sparse non-negative matrix
factorization (SNMF) [14]. It can be deemed as the fast version
of SNMF.

A. NMF

NMF is a part-based algorithm to represent an image (e.g
face image) as a linear combination of basis vectors [15]. Its
basis vectors are not orthogonal but non-negative to mimic the
representation process in human brain according to evidences
from psychological and physiological researches. NMF allows
additive combination only for basis images to represent an
image. With this restriction, locality property has been shown
in both basis and coefficients from the intuitive views of the
image parts.

Assume each image is vectorized to a vector in a high-
dimensional space RD where D equals to the image size
w × h. Given the non-negative training images (vectors)
X = [x1 · · · xN ], the NMF finds a D × d non-negative
transformation matrix U = [u1 · · · ud ], where the columns
(basis vectors) of U span a subspace in a low-dimensional
subspace Rd , and the non-negative matrix Y = [

y1 · · · yN
] ∈

Rd×N such that X ≈ UY. Lee and Sung [15] proposed to
find optimal matrices U and Y by maximizing the following
objective function

min
U,Y

N∑
i=1

D∑
j=1

[
xi j log(UY)i j − (UY)i j

]
s.t. Uij ≥ 0, Yi j ≥ 0

(1)

where xi j and (UY)i j are the i j th entries of matrices X and
UY, respectively. This objective function is related to the
likelihood of generating the images in X from the basis U
and encoding Y [15].

B. SNMF

Originally, NMF is assumed to be able to find part-based,
linear representations of a set of non-negative samples. How-
ever, recent research on NMF has discovered that NMF does
not always result in part-based representations. To guaran-
tee part-based characteristics, Hoyer [14] explicitly imposed
sparseness constraints on the squared error based objective
function. This sparse constrained method is termed SNMF in
this paper. It exhibits different levels of part-based (locality)
property by specifying different value of sparseness. The
sparseness is measured by

sparseness (x) =
√

D − (
∑ |xi |)/

√∑
x2

i√
D − 1

(2)

where xi is the i element of vector x and D is the dimension-
ality of x. The function value is one if and only if x contains
only a single non-zero component, and takes a value of zero
if and only if all components are identical [14].

The problem of SNMF can be formulated as [14]

min
W,H

‖X − UY|| 2

s.t. U, Y ≥ 0
sparseness(ui ) = Su , ∀i
sparseness(yi) = Sy , ∀ j.

(3)

If the sparseness is forced to be close to 1, the subspace
analysis becomes holistic-based and SNMF will degenerate to
NMF.

III. B-SNMF

A. Training Process

Binary SNMF (B-SNMF) is an approximate version of the
original SNMF in the sense that the basis vector u of SNMF
is approximated by linearly combining a small number K of
selected Haar-like box functions vi

f (u) ≈ ũ =
K−1∑
i=0

ci vi (4)

where f (u) is a reshape operation to re-arrange u as a w × h
(image size) matrix. The Haar-like box functions v can take
two forms [17], [20]

v(i, j) =
{

1, l ≤ i ≤ r and t ≤ j ≤ b
0, elsewhere

, (5)

and

v(i, j) =
⎧⎨
⎩

1, l1 ≤ i ≤ r1 and t1 ≤ j ≤ b1
1, l2 ≤ i ≤ r2 and t2 ≤ j ≤ b2
0, elsewhere

, (6)

where (5) corresponds to a one-box Haar-like box function and
(6) is a symmetric two-box Haar-like box function. As stated
in [17], the number of single and that of double Haar-like box
functions are h × (h − 1) × w × (w − 1)/4 and h × (h + 1) ×
w×(w−1)/16, respectively. The union � of the one-box and
two-box Haar-like box functions is called the dictionary of the
Haar-like box functions. The size D of the dictionary is given
by D = h×(h−1)×w×(w−1)/4+h×(h+1)×w×(w−1)/16.
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Fig. 2. Top: Example basis vectors of SNMF with sparseness≈0.8; Bottom:
The basis vector of SNMF can be approximated very well by only one Haar
function illustrated as the rectangle

The K Haar-like functions expressed as (5) and (6) are
selected from the huge dictionary. To speed up the selec-
tion process, we propose a computationally economical “pre-
filtering” step followed by a matching pursuit process [13],
[17], [18]. The pre-filtering can exclude a great deal of the
Haar-like box functions in the huge dictionary with little
computational cost. Only those Haar-like box functions that
pass the pre-filtering step are to be evaluated by the time
consuming matching pursuit criterion. In B-PCA, there is no
such pre-filtering step and so all the Haar-like box functions
have to be evaluated by the time-consuming criterion. Thus,
the training time of B-PCA is very long relative to that of
B-SNMF. The pre-filtering is motivated by the sparseness
property (as shown in Fig. 2) of SNMF.

The pre-filtering step can exclude the useless Haar-like box
functions by simply counting the number of non-zero values
of the part of the basis vector f (u) overlapped by the Haar-
like box v ∈ �. The percentage z of non-zero elements of the
intersection between f (u) and v is

z =

r∑
i=l

t∑
j=t

I ( f (u; i, j)) > 0)

(r − l + 1) × (b − t + 1)
× 100 (7)

where f (u; i, j) is the i j entry of the function f (u) and
the value of indicate function I ( f (u; i, j) > 0) = 1
if f (u; i, j) > 0, otherwise the value of the indicator
I ( f (u; i, j) > 0) = 0. If z is less than a predefined threshold
Z (e.g., 0.01), the Haar-like box function v should not be used
to approximate u. Because u is usually sparse and compact,
z < Z occurs in many locations. Hence, many Haar-like box
functions satisfying z < Z can be excluded from the candidate.
We call these Haar-like box functions easy-excluded Haar-
like box functions. Denote the easy-excluded set of Haar-like
box functions satisfying z < Z by �. Only the Haar-like
box functions in vi ∈ � − � are evaluated by the following
time consuming matching pursuit process which involves the
matrix inverse operation: suppose t − 1 Haar-like functions
Vt−1 = [

v1 · · · vt−1
]

have been selected, the t Haar-like box
function vt is selected according to [13], [17], [18]

vt = arg max
vi∈�

[
u − Vt−1

(
VT

t−1Vt−1
)−1

VT
t−1u

]T

×
[
vi − Vt−1

(
VT

t−1Vt−1
)−1

VT
t−1vi

]
||u − Vt−1

(
VT

t−1Vt−1
)−1

VT
t−1u||

. (8)

The numerator of (8) is a product of two items. The first
item is the component of u that is orthogonal to the sub-
space spanned by the columns of Vt−1. The second item
is the reconstruction residual of v using the reconstruction
matrix Vt−1

(
VT

t−1Vt−1
)−1

VT
t−1. Under the special condition

that Vt−1 is an orthogonal matrix, the reconstruction matrix
becomes Vt−1VT

t−1.
In B-PCA, all Haar-like box functions in the huge dictionary

are subject to the selection process in (8). So the selection
process in B-PCA is very slow. The proposed method B-
SNMF can alleviate the difficulty by filtering out the easy-
excluded Haar- like box functions.

More Haar-like box functions should be selected until the
angle α between u and ũ

α(u, û) = 180

π

uT ũ
(||u||) (||ũ||) (9)

is below a threshold θ .
In B-SNMF, SNMF is conducted as many times as the

number of features to be extracted. At each time i , the input
of SNMF is the reconstruction error E corresponding to the
i − 1 available basis vectors Ũ = [

ũ1 · · · ũi−1
]
, i.e.,

E = X − X̃

X̃ = Ũ
(

ŨT Ũ
)−1

ŨT X
. (10)

In (10), X contains all training samples and the second row
is the reconstruction formula for non-orthogonal basis vectors
[21].

The output of SNMF is the most important basis vector and
other basis vectors are discarded for further processing. At the
beginning of the training process E is initialized to be X.

The framework of B-SNMF is similar to that of B-PCA.
But in comparing with B-PCA, both the training and testing
processes of B-SNMF are much faster.

B. Feature Extraction Process

Denote x ∈ R
w×h as an image from which features are to

be extracted. The feature extraction can be done by the inner
product of the matrix x with f (u)

y = sum( f (u) ⊗ x) (11)

where ⊗ stands for the Hadamard product and the summation
is sum(x) = ∑h−1

i=0
∑w−1

j=0 x(i, j). Though (11) is straightfor-
ward, it is not efficient in computation. In fact, B-SNMF as
well as B-PCA calculates y based on the integral image i t (x).
The i j entry of i t (x) is

i t (x; i, j) =
∑i

r=0

∑ j

c=0
x(r, c). (12)

To see the usefulness of the integral image, let us substitute
(4) into (11)
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y = sum( f (u) ⊗ x)

≈ sum

(
K−1∑
i=0

ci vi ⊗ x

)

=
K−1∑
i=0

ci sum(vi ⊗ x). (13)

Without loss of generality, we assume vi is a one-box Haar-
like function. Because of

sum(vi ⊗ x) =
bi∑

r=ti

ri∑
c=li

x(r, c)

= i t (x; b, r) − i t (x; b, l − 1)

− i t (x; t − 1, r) + i t (t − 1, l − 1) (14)

it holds that

y =
K−1∑
i=0

ci
[
it(x; b, r) − i t (x; b, l − 1)

− i t (x; t − 1, r) + i t (t − 1, l − 1)
]
. (15)

It is worth noting that (15) is irrelevant to the image size.
Therefore, if K is small, the right hand side of (15) can be
computed fast. Equation (11) needs w ×h multiplications and
w × h − 1 additions while (15) needs K multiplications and
4K − 1 additions.

The testing process of B-SNMF is faster than that of B-PCA
because the number K in (15) in B-SNMF is usually smaller
that that in B-PCA. To clarify this point, it is helpful to observe
the appearance of f (ui ) as shown in Fig. 2. Obviously, the
basis vectors are sparse, compact and have good local property
in comparing with that of PCA (as shown in Fig. 3). In
Fig. 2, the black means zero value and the white indicates
positive value. The characteristic of SNMF makes it possible
to represent the basis vector using smaller number of Haar-
like box functions to approximate the basis vector than that
for approximating the basis vector of PCA. Fox example, in
the bottom of Fig. 2 the basis vector can be approximated
very well (the reconstruction error ratio is less than 0.1) by
only one Haar-like box function illustrated as the Haar-like
rectangles. The Haar-like box functions exhibit the unique
characteristic of having both global and local properties and
are more suitable for analyzing the signal in Fig. 2 than the
basis vector (i.e., eigenface) as shown in Fig. 3. Fox example,
about 100 Haar-like functions are necessary to approximate
the basis vector of PCA as shown in the first image of Fig. 3
so that the reconstruction error ratio is not larger than 0.1.

IV. EXPERIMENTAL RESULTS

In the following experiments, ORL database [19] is em-
ployed to evaluate the performance of the proposed B-SNMF.
The ORL database is made up of forty subjects, with which
each subject has ten images. In our experiments, five images
of each subject have been randomly chosen for training and

Fig. 3. Example basis vectors of PCA. Note the holistic characteristic of the
basis vectors.

the remaining five for testing. Totally, five groups of training
and testing sets are generated by this way.

SNMF is equivalent to regular NMF plus sparseness con-
straints. In other words, regular NMF is a special case of
SNMF. Let the sparseness coefficients of SNMF be 0, SNMF
degenerates to regular NMF. In our experiments, we tuned
the sparseness coefficients such that we can get parts-based
representations and the recognition rate is the highest. Our ex-
perimental results show that: when the sparseness coefficients
Su = 0.8 and Sy = 0.7, both SNMF and our B-SNMF works
very well. The angle [as shown in (9)] threshold of B-SNMF
is θ = 25.

Fig. 4(a) shows the average recognition accuracies of B-
SNMF and SNMF with the image size 14×12. The setup of
the experiments corresponding to Fig. 4(b) is identical to that
of Fig. 4(a) except that in Fig. 4(b) the image size is 44×36. As
shown in both Fig. 4(a) and Fig. 4(b), the recognition rates of
B-SNMF are as good as those of SNMF as long as the image
size is large enough.

Fig. 5 compares the recognition performance of B-SNMF
and SNMF with PCA when random occlusions (see Fig. 6)
occur in testing images. Because we focus on unsupervised
learning algorithms, comparison with supervised algorithms
such as LDA and MFA is unfair. The image size is 44×36.
For each testing image (there are 200 testing images), a white
block is used to occlude the face image. The size of the white
block varies from 8×8 to 14×14. The position of the white
block is random. The sparseness and locality properties of
B-SNMF make it much more robust to occlusions than both
PCA and B-PCA. Because the recognition rates of B-PCA are
not higher than those of PCA, they are lower than those of
B-SNMF. In Fig. 5 as well as in Fig. 4(b), the recognition
performance of B-SNMF is comparable to that of SNMF.

So far, we have demonstrated the performance of B-SNMF
in terms of recognition accuracy. Let us now report its perfor-
mance in aspect of computational cost.

Suppose the dictionary size is D, |�| is the cardinality of �
and � is the set of Haar-like boxes satisfying z < Z = 0.01
(as shown in [7)]. Then the fraction, |�|/D, of easy-excluded
Haar-like box functions reflects the extent of reduced training
cost of B-SNMF relative to B-PCA. The smaller the |�|/D is,
the faster training speed of B-SNMF will be. Easy-excluded
Haar-like box functions are free of being evaluated by (8).
Table I shows the value of |�|/D. The actual reduced training
time can be derived from the value of |�|/D. It is observed
that the advantage of B-SNMF becomes remarkable with the
increasing of the image size.

Table II compares the number of selected Haar-like box
functions of B-SNMF and that of B-PCA. The number of
Haar-like box functions increases until the reconstruction error
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Fig. 4. Recognition accuracies for B-NMFSC and SNMF: (a) recognition
rates for image size 14 × 12. (b) recognition rates for image size 44 × 36.
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Fig. 5. Recognition rates for B-SNMF, SNMF, and PCA when random
occlusions occur in testing images.

Fig. 6. Examples of occluded face images.

TABLE I

FRACTION OF EASY-EXCLUDED HAAR-LIKE BOX

FUNCTIONS OF B-SNMF

Image size 14×12 28×23 44×36 112×92
D 7392 118657 751905 32668188

|�|/D 61% 47% 37% 25%

TABLE II

NUMBER OF SELECTED HAAR-LIKE BOX FUNCTIONS

TO APPROXIMATE 15 BASIS VECTORS

Image Size 14×12 28×23 44×36 112×92
B-PCA 269 424 N/A N/A

B-SNMF 226 364 407 511

ratio is not larger than 0.1. We observe that B-SNMF utilizes
smaller number K of Haar-like box functions than B-PCA
does. The basis vector of B-SNMF has compact support and
this local property leads to that fewer Haar-like box functions
are enough to approximate the basis vector. From (15), one can
infer that: the smaller the K is, the faster the feature extraction
process will be.

V. CONCLUSION

We have presented a fast part-based subspace selection
algorithm, which is termed the binary sparse nonnegative
matrix factorization (B-SNMF). B-SNMF makes full use of
the sparseness property of the basis vector to remove easy- ex-
cluded Haar-like box functions with little computational cost.
Besides, the feature extraction process (i.e., testing process)
is much faster than binary principal component analysis (B-
PCA) without significantly degrades the recognition accuracy.
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