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a b s t r a c t

In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in

the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise

constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such

supervised information to improve the performance of dimensionality reduction. In this case, it is

necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-

supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework

under the pairwise constraints. Through transferring the pairwise constraints in the observed space to

the latent space, the constrained priori information on the latent variables can be obtained. Under this

constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm.

The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In machine learning and statistical pattern recognition,
dimensionality reduction is of great importance and has been
extensively studied. Existing methods for dimensionality reduc-
tion can be divided into two general categories, i.e., determined
framework and probabilistic framework.

The determined methods can be further divided into two
classes: linear and nonlinear methods. The linear methods, e.g.,
principal component analysis (PCA) [1,2] and multidimensional
scaling (MDS) [3], try to seek a set of optimal bases for the
subspace selection. However, they cannot catch the curvature and
nonlinear structures embedded in the observed data. The non-
linear methods, e.g., the kernel extensions of PCA (kernel PCA) and
MDS cannot adaptively deal with the different real data sets due
to the fixed model parameters [4], and the cost functions in these
extensions put great impact on the results of dimensionality
reduction, and are hard to determine. These shortcomings will
lead to some negative effect for their applications [5–7].

The probabilistic methods can also be divided into linear and
nonlinear methods. Linear methods, e.g., probabilistic principal

component analysis (PPCA) [8] and factor analysis (FA) [9,10],
are conducted to tackle the problems of the small/sparse training
sample sets. However, PPCA and FA are linear latent variable
models and cannot catch nonlinear structure for its linear
property. To this end, a nonlinear probabilistic model, the
Gaussian process latent variable model (GP-LVM), is proposed
recently to offer a projection from the latent space to the observed
space [11,12].

The GP-LVM is a dual probabilistic interpretation to PPCA. It
establishes a nonlinear mapping from the latent variable space,
i.e., low-dimensional space, to the observed space by giving a
Gaussian process prior to the mapping function [13]. A Gaussian
process can be used as a priori probability distribution over
functions in Bayesian inference and it has been widely used in
machine learning for regression [14] and classification tasks [15].
Through modeling the joint probability density of the observed
data, the GP-LVM can obtain low-dimensional manifolds with a
little number of samples. However, the GP-LVM is an unsuper-
vised learning method, which does not utilize the available
supervised information for learning, thus it cannot capture the
structure in the observed set preferably.

In general, there are two kinds of supervised information, that
is, label sets and pairwise constraints. The former can provide the
category label for each sample in the training set, while the latter
only offers the constrained relationship for two samples, i.e.,
indicating whether two samples belong to the same class or not.
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So we can reach the conclusion that pairwise constraints are
much weaker and more general priori information than the label
information. When a great deal of labeled samples are available,
supervised learning methods can work very well [16,17]. How-
ever, labeled data is often limited, and labeling samples requires
much human expertise, so it is an expensive job to obtain
supervised information. While, the pairwise constraints are easier
to be obtained than the label information, so pairwise constraints
have been widely used in the dimensionality reduction methods,
such as in PCA [18,19], Fisher linear discriminant analysis (FLDA)
[20] and locality preserving projection (LPP) [21,22]. Since
pairwise constraints cannot offer the detail label sets, especially
for multi-class tasks, they belong to semi-supervised information.

In this paper, we propose a new semi-supervised Gaussian
process latent variable model which utilizes some supervised
information as priori information, i.e., pairwise constraints
mentioned above, for dimensionality reduction. Since the pair-
wise constraints are traditionally defined in the original observed
space rather than in the latent variable space, we have to first
transfer the pairwise constraints from the observed space to the
latent space. Then we can obtain the priori information of the
latent variables according to the transferred pairwise constraints.
At the same time, the likelihood of the observed data can be
calculated through the typical GP-LVM. So the posteriori prob-
ability of the latent variables will be obtained based on the Bayes
theorem. Finally, the latent variables can be optimized through
MAP algorithm.

The rest of this paper is organized as follows. In Section 2,
some previous work is summarized, such as GP-LVM and the
pairwise constraints. Section 3 describes how to establish the
semi-supervised GP-LVM and its realization algorithm in detail.
The experimental results and analysis are given in Section 4 to
show the improved performance of the proposed method. The
final section offers our conclusion.

2. Background

In this section we review some previous work on GP-LVM.
More formally, let Y¼[y1,y,yN]T be the matrix denoting N

observed examples, i.e., the high-dimensional data set to be
processed. Each object yi is described by a D-dimensional feature
vector with yiARD. We use X¼[x1,y,xN]T to denote the low-
dimensional set with xi representing positions in latent space of
the corresponding high-dimensional point, xiARd, doD.

2.1. Gaussian process latent variable model

The GP-LVM is the dual representation of the PPCA. PPCA
supposes that all variables are drawn from the same Gaussian
distribution independently. PPCA determines the principal axes of
a set of observed data vectors by maximum-likelihood estimation
of projection. The dual representation of PPCA supposes that the
linear mapping vectors in the projected matrix are independent
identity distribution. By imposing a nonlinear Gaussian process
priori to the transform f in each mapping direction, the GP-LVM
can be established [13]. The positions of the data in the latent
space can be obtained through integrating over f and maximizing
likelihood function of the observed data set. The detail description
will be given as follows.

The mapping function f:X-Y is a Gaussian process priori given by

f �Nð0,KÞ ð1Þ

with the covariance between xi and xj, and the kernel function value is
determined by a Mercer kernel function, for example, the radius basis
function (RBF) kernel. The RBF kernel is employed as the nonlinear

mapping function, which can be substituted with

kðxi,xjÞ ¼ yrbf exp �
g
2
ðxi�xjÞ

T
ðxi�xjÞ

� �
þywhitedij, ð2Þ

where k(xi, xj) is the element in the i-th row and the j-th column of the
covariance matrix K and di,j is the Kronecker delta function. y¼[yrbf, g,
ywhite] is a collector of the kernel parameters.

In the GP-LVM, a Gaussian process prior is imposed on the
mapping function fd in each dimension,

pðf Þ ¼
YD

d ¼ 1

pðfdÞ ¼
YD

d ¼ 1

Nðfdj0,KÞ, ð3Þ

where D is the dimension of the observed data and K can be
computed through the RBF kernel defined in Eq. (2).The Gaussian
processes are natural generalizations of multivariate Gaussian
random variables to infinite index sets. It provides a promising
non-parametric Bayesian approach to metric regression [23] and
classification problems [24]. A Gaussian process priori over a
function defines a flexible probabilistic distribution. Then the
likelihood for every dimension can be obtained through margin-
alizing the mapping function.

pðy:,djX,yÞ ¼
Z

pðy:,djX,fd,yÞpðfdÞdfd ¼Nðy:,dj0,KÞ: ð4Þ

The likelihood for the whole observed data can be viewed as a
product of D number of independent Gaussian processes, and
each process is related to a different dimension of the data set. So
the observed data likelihood function can be obtained as follows:

PðY jX,yÞ ¼
1

ð2pÞDN=2
jKjD=2

exp �
1

2
trðK�1YYT Þ

� �
: ð5Þ

The framework of the GP-LVM includes two modules:
(a) initialization of the latent variables X and hyper-parameter
y; (b) optimizing algorithm with scale conjugate gradient (SCG)
method. In the first module, the latent variables X are initialized
with PCA, where the number of the projected vectors remaining in
PCA is consistent with the dimension of the latent variable X.
The RBF kernel hyper-parameters are initialized as y¼[1,1,1].
The second module can be divided into two steps. In the first
step, the hyper-parameters will be obtained through maximizing
the likelihood which can be calculated by Eq. (5), that is to say, the
process to obtain the optimal hyper-parameter is realized through
maximizing the likelihood by SCG method. In the second step, the
likelihood is updated with the new hyper-parameter, and then the
latent variable can be obtained through maximizing the likelihood
by SCG method. These two steps are executed iteratively in the
optimizing process until convergence. The algorithmic flowchart
of the GP-LVM is shown in Fig. 1.

2.2. Pairwise constraints

Unlike the class labels, the pairwise constraints do not give the
labels of the training samples. This kind of constraints only offers
the pairs information. That is, two samples belong to the same
class or different classes. More specifically, we consider the
following two types of pairwise constraints: must-link constraints
and cannot-link constraints as follows:

� Must-link constraints: constraints specify that two samples
should be assigned into one class. The constraints data set can
be noted as
M¼{(yi,yj)j yi and yj belong to the same class}.
� Cannot-link constraints: constraints specify that two samples

should be assigned into different classes. The constraints data
set can be denoted as
C¼{(yi,yj)j yi and yj belong to the different classes}.
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In this paper, we try to find a way to introduce the pairwise
constraints into the probabilistic latent variable model. As well
known, this kind of constraints is defined to the observed data, so
the problem we have to deal with is how to introduce the
constrained knowledge into the latent space and then use this
knowledge to optimize the model. In the following section, we
will focus on this problem and point out a way for transferring
pairwise constraints to the latent space, and then utilize this
knowledge to obtain some priori information for the latent
variables.

3. Semi-supervised Gaussian process latent variable model

To resolve the aforementioned problem, a new semi-super-
vised learning framework for GP-LVM based on pairwise con-
straints will be established in this section. Since this paper mainly
studies the embedding method of pairwise constraints in the
latent variable model, this section puts the emphasis on how to
transfer the constraints on the observed examples to the latent
variables, and how to use this constrained information in the
latent space. This section presents the process to establish the
semi-supervised GP-LVM utilizing the constrained information.

3.1. Pairwise constraints in the latent variable model

As well known, the pairwise constraints are traditionally
defined in the original observed space rather than in the latent
variable space, we will give the steps on transferring this
constrained information to the latent variables.

If the pair of samples (yi, yj)AM, the latent variables (xi, xj)
corresponding to (yi, yj) will belong to the same class. In the same
way, if the pair of samples (yi, yj)AC, the latent variables (xi, xj)
corresponding to (yi, yj) will belong to the different classes. Then
according to the relationship among the observed samples, we
can infer the priori information of the latent variables. Besides the
relationship of the pairwise constraints, the distances of the
observed samples are also an important character in describing
the whole dataset. Therefore a weight matrix should be obtained
with considering not only pairwise constraints but also the
distances of the samples. We define the weight matrix which
offers a positive weight if the sample pair belongs to the same
class and a negative weight if the sample pair belongs to different
classes. At the same time, a large value will be assigned to the
weight if the distance between two samples is small, otherwise a
small value will be assigned. We define a weight matrix WARN�N

as

Wi,j ¼

et

1þet
, ðyi,yjÞAM

�
et

1þet
, ðyi,yjÞAC

0, otherwise

8>>>>><
>>>>>:

ð6Þ

where t¼Jxi, xjJ represents the Euclidean distance between two
latent variables xi and xj. The value Wi,j will be determined by both
the distance and the pairwise constraints. If the two samples
belong to M, i.e., the same class, the weight value is positive. If
they belong to C, the weight value is negative. The weight values
will change with the distance among the latent variables as
shown in Fig. 2.

As shown in Fig. 2, real line represents the must-link relation-
ship in two samples, and dashed line represents cannot-link

relationship. The values will be positive if the sample pair belongs
to same class and negative if the sample pair belongs to different
classes. The values are also influenced by the distances of samples.

The priori probability of the latent variables can be defined as

PðXÞ ¼
1

Z
exp �

XN

i,j ¼ 1

dðxi,xjÞ

0
@

1
A, ð7Þ

where d(xi, xj)¼Wi,jJ(xi, xj)J and Z is a constant. So the Eq. (7) can
be rewritten as

PðXÞ ¼
1

Z
exp �

XN

i,j ¼ 1

dðxi,xjÞ

0
@

1
A¼ 1

Z
exp

�
�trðXT WXÞ

�

¼
1

Z
exp

�
�trðWXXT Þ

�
: ð8Þ

where W represents a weight matrix. Just as mentioned above, the
weight matrix is defined according to the pairwise constraints and
the distances of the samples. Then the weight matrix W can be
obtained by Eq. (6).

3.2. The semi-supervised GP-LVM

Given the constrained priori information of the latent variables
in Eq. (8), the detail description of the semi-supervised framework
will be given. The GP-LVM is a latent variable model through
defining a joint distribution over the observed variables Y and the
latent variables X.The hyper-parameters and the latent variables

Maximize
Likelihood with 

respect to t

LikelihoodTraining
dataset Y

Likelihood
( , )t tp Y X

Initialization
, , , 1X T t

Hyperparameters
1t 1( , )t tp Y X

Latent variables
1tX

Maximize
Likelihood with

respect to tX1t t t T

Fig. 1. The flowchart of the GP-LVM.

observed sample
latent variable 
must-link
cannot-link

0.61

0.67

-0.62

0.73

-0.56
-0.68-0.60

Observed space Latent space

transfer the constraints

Fig. 2. The transfer scheme of the pairwise constraints.
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can be optimized through maximizing the likelihood function as
Eq. (5).

PðY jX,yÞ ¼
YD
i ¼ 1

1

ð2pÞN=2
jKj1=2

exp �
1

2
yT
:,dK�1y:,d

� �
: ð9Þ

According to the Bayes theorem

pðXjY ,yÞ ¼
pðYjX,yÞpðXÞ

pðYÞ
: ð10Þ

It can be rewritten as

pðXjY ,yÞppðY jX,yÞpðXÞ: ð11Þ

We have obtained the priori information of the latent variables X

according to the Eq. (8). The posterior of X can be calculated based
on the Bayes theorem. The maximum of posterior is equal to
maximizing the right hand of Eq. (11). The log posterior is given by

L¼ ln pðXjY ,yÞ ¼ ln pðYjX,yÞþ ln pðXÞ: ð12Þ

The first part in the right hand of Eq. (12) is the same as log-
likelihood of the GP-LVM,

ln pðY jX,yÞ ¼ �
DN

2
ln 2p�D

2
lnjKj�

1

2
trðK�1YYT Þ: ð13Þ

The second part in the right hand of Eq. (12) is a priori
information for latent variables based on pairwise constraints.

ln pðXÞ ¼�trðWXXT Þþconstant ð14Þ

Therefore, finding the maximum posterior configuration of the
GP-LVM equivalent to maximizing the posterior probability,

L¼�
D

2
lnjKj�

1

2
trðK�1YYT�2WXXT Þþconstant: ð15Þ

In the above process, we substitute the priori with the
constrained knowledge in Eq. (8), and then the framework of
semi-supervised GP-LVM is established based on pairwise con-
straints.

In the following experiments, we apply the scaled conjugate
gradient with regard to latent variables X and hyper-parameters
for training. The detailed steps for training process will be given in
Table 1. Firstly the latent variables will be initialized through PCA

and all the values in the hyper-parameters are set to 1. Then the
latent variables and the hyper-parameters will be optimized
alternatively. Finally the semi-supervised GP-LVM can be
established with the hyper-parameters obtained from the
training process. The whole and detailed procedures for semi-
supervised GP-LVM are shown in Table 1.

Table 1 summarizes the learning algorithm of the proposed
semi-supervised GP-LVM. It reaches the optimal solution by the
alternative iteration between the hyper-parameters Y and latent
variables X. After that, for the test point y*, we can follow the GP-
LVM algorithm to obtain its position x* in the latent space.

We assume that the p(y*
jx*) satisfies a Gaussian distribution, i.e.,

pðy�jx�Þ ¼Nðy�jm�,s2
�IÞ: ð16Þ

The mean m* and the variance s2
� can be represented

respectively,

m� ¼ YT K�1k

s2
� ¼ kðx�,x�Þ�kT K�1k

(
ð17Þ

where K denotes the kernel matrix developed from the training
set, and k is the vector of covariance between the test point y* and
N training points. The points x* can be optimized by maximizing
Eq. (16) with gradients-descent method.

3.3. Discussion and remarks on the semi-supervised GP-LVM

Eq. (15) suggests a general framework for incorporating
constraints into the GP-LVM. Particular choices of the pairwise
constraints would construct the different weight matrix and
produce corresponding algorithms. That is, if the data set can be
divided into three parts: must-link constrained data, cannot-link

constrained data and unlabeled data, then the semi-supervised
GP-LVM can be built in three ways as follows:

� SSGP-LVM-M: Only the must-link constraints is used in the
model, then the weight matrix will be shown as,

Wi,j ¼

et

1þet
, ðyi,yjÞAM

0, otherwise

8<
: ð18Þ

� SSGP-LVM-CM: Both the must-link and cannot-link constraints
are used in the model, then the weight matrix can be shown as,

Wi,j ¼

et

1þet
, ðyi,yjÞAM

�
et

1þet
, ðyi,yjÞAC

0, otherwise

8>>>>><
>>>>>:

ð19Þ

� SSGP-LVM-CMU: Both the constrained points and the unla-
beled points are used for training process, the weight matrix
will be

Wi,j ¼

et

1þet
, ðyi,yjÞAM

�
et

1þet
, ðyi,yjÞAC

et

N2ð1þetÞ
, otherwise

8>>>>>>><
>>>>>>>:

ð20Þ

It is the same with Eq. (17). N is the total number of observed
samples.

We can choose one of the weight matrix frameworks according
to what we need in the experiments. If we only want to use
the must-link constraints, we will choose the Eq. (18) to generate
the weight matrix. When both of the must-link constraints and
cannot-link constraints are required, we should use Eq. (19).

Table 1
An algorithm for learning semi- supervised GP-LVM.

Input: The high-dimensional data YARN�D, and set of must-link constraints

M¼(yi, yj), the set of cannot-link constraints C¼(yi, yj), the maximum

iteration of training T.

Initialization: the latent variables XARN�d through PCA, the hyper-

parameters Y¼[1,1,1].

For t¼1 to T

1. Calculate the kernel matrix Kðt�1Þ
Y ¼ KðXðt�1Þ ,Yðt�1Þ

Þ and the weight matrix

W(t�1) according to the pairwise constraints M and C;

2. Calculate the log-likelihood:

Lðt�1Þ ¼ �
DN

2
ln2p�D

2
lnjK ðt�1Þj�

1

2
trðWXXT Þ;

3. Optimize the hyper-parameters YðtÞ ¼ argmin
Y
f�Lðt�1Þg using scale conjugate

gradient method;

4. Update the kernel matrix K(t�1)
¼K(X(t�1), Yt);

5. Calculate the log-likelihood

Lðt�1Þ ¼ �
DN

2
ln2p�D

2
lnjK ðt�1Þj�

1

2
trðWXXT Þ;

6. Optimize the latent variables XðtÞ ¼ argmin
X
f�Lðt�1Þg using scale conjugate

gradient method;

Check convergence: the training stage of semi-supervised GP-LVM converges if

ErrorðtÞ ¼
PN

i ¼ 1

:xt
i�xt�1

i :2 re

7. Set t’t+1, go back to 2, until convergence.

Output: the hyper-parameters Y and X.
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And the Eq. (20) should be demanded if both the constrained data
and unlabeled data are chosen in the training algorithm.

4. Experiments and analysis

In this section, to validate the effectiveness of the proposed
semi-supervised dimensionality reduction method, we conduct
several experiments on some benchmark data sets, including USPS

handwritten digits, oil data set, ORL face database, YaleB face
database and five UCI data sets, i.e., iris, wine, balance, sonar, letter.

The experiments consist of four parts. In the first part, we will
visualize the latent variables in 2-D space, the USPS Handwritten

digits data sets are used to verify the effectiveness of the proposed
method. Then in the second part, we study the classification
accuracy influenced by the constrained percents on the oil data set
and three UCI data sets (balance, iris and sonar). In the third part,
we address the classification accuracy changing with the dimen-
sion of the latent space, in which the oil data set, USPS data sets
and ORL face data will be used. In the last part, the superiority
of the proposed method is demonstrated by comparing with
other semi-supervised method which is based on the pairwise
constraints.

4.1. Data sets

We test the proposed method on a broad range of data sets,
including USPS handwritten digits [11], oil data set [11], ORL face

database [25], YaleB face database [25] and five UCI data sets[26],
i.e. iris, wine, balance, sonar, letter. The detailed description on data
sets is given in Table 2.

The first data set is handwritten digits which play an important
role in pattern classification, and it is popular for testifying the
performance of some algorithms in data visualization. The second
data set is the multi-phase oil flow data. Oil data set has three
classes with 1000 samples which have input dimensionality of 12.
There are three phases (classes) of flow associated with the

data: stratified, annular and homogenous. The following five data
sets are all from the UCI data sets, and their attributes are not very
high. The ORL face database and YaleB face database has much
greater dimensionality than the data sets mentioned above. The
ORL face database containing 400 images of 40 individuals is
selected as test-bed. For each of individual, there are ten different
images taken at different times, varying with the lighting and
facial expressions, as shown in Fig. 3. The YaleB face database
contains a total of 640 images of 10 individuals. The size of each
cropped image for both databases is 32�32 pixels.

4.2. Visualization in 2-D latent space

We use USPS handwritten digits data sets to verify the
effectiveness of the proposed semi-supervised GP-LVM for data
visualization. This database includes ten digits from ‘0’, ‘1–9’ in
the 256-dimensional space. In the following experiments, we
choose three digits ‘3’, ‘5’ and ‘8’ as shown in Fig. 4.

For each digit, 300 samples are randomly selected. The must-

link constraints and cannot-link constraints have been defined
according to their label sets. The four sub-figures in Fig. 5
visualize results of four models: GP-LVM, BC-GP-LVM [27], SSGP-
LVM-M and SSGP-LVM-CM. in each subfigure, ‘3’ is represented by
red crosses, ‘5’ is denoted as blue circles and ‘8’ is represented by
magenta stars.

Fig. 5(a) shows the result of the traditional GP-LVM. Since it is
an unsupervised learning method, the traditional GP-LVM does
not utilize the label information or pairwise constraints, which
leads to the dimensionality reduction result with less discrimi-
native information. Therefore, it can be found in Fig. 5(a) that all
the samples of the three digits are overlapped and cannot be
distinguished from each other. As a nonlinear dimensionality
reduction method, the traditional GP-LVM establishes a smooth
mapping from the latent space to the data space, so it will
preserve local distances in the latent space. That is, if two samples
are adjacent to each other in the latent space, their corresponding
samples mapped by the GP-LVM will be also adjacent in the
observe space. However if their corresponding samples are

Table 2
The basic information of the data sets.

Data Total number Dimensionality Class

USPS 7921 256 10

Oil 1000 12 3

Iris 150 4 3

Wine 178 13 3

Sonar 208 60 2

Balance 625 4 3

ORL face 400 1024 40

Letters 3680 16 5

YaleB face 2414 1024 38

Fig. 3. Sample face images from the ORL database. For each subject, there are 10 face images with different facial expression and details.

Fig. 4. Sample digit images from the handwritten digits database ‘3’, ‘5’and ‘8’.

X. Wang et al. / Neurocomputing 73 (2010) 2186–21952190
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adjacent in the observed space, the GP-LVM cannot guarantee
these two latent variables adjacent to each other. To this end, a
back constrained GP-LVM (BC-GP-LVM) is proposed [27]. By
adding distance constraints for pairs’ observed samples, the BC-
GP-LVM overcomes the shortcoming that the traditional GP-LVM
cannot preserve the local neighborhood in the latent space. As
shown in Fig. 5(b), the BC-GP-LVM can roughly take three digits
‘3’, ‘5’ and ‘8’ apart. Since the BC-GP-LVM is still an unsupervised
learning algorithm, the dimensionality reduction result cannot
provide more discriminative information. It can be seen in
Fig. 5(b) that some samples of digits ‘3’ (with blue circle) and
‘5’(with magenta cross) are overlapped each other. Fig. 5(c) is the
result of the SSGP-LVM-M in which only the must-link constraints
have been utilized, and the weight matrix is computed with
Eq. (16). Fig. 5(d) shows the result of the SSGP-LVM-CM which
utilizes both the must-link constraints and the cannot-link

constraints, and the weight matrix is computed through
Eq. (20). It is obvious that the result of the SSGP-LVM-M has less
discriminative information than that of the SSGP-LVM-CM. It is
because that the SSGP-LVM-M does not use the cannot-link

constraints. And the Fig. 5(d) reaches more discriminative result
than other three methods, in which samples in same class are
distributed tightly, and compact manifolds can be obtained for

each class, while samples in different classes can be well
separated.

4.3. Classification accuracy influenced by number of constraints

The proposed method is based on the pairwise constraints, so
it may be influenced by the number of constraints. In this
subsection, we evaluate the performance of the semi-supervised
GP-LVM on the oil data set and three UCI data sets. The proposed
semi-supervised GP-LVM (including SSGP-LVM-M, SSGP-LVM-CM
and SSGP-LVM-CMU) will be compared with the GP-LVM under
different level of constraints. The nearest neighborhood (NN)
classifier is used for classification after dimensionality reduction.

In the following experiments, the pairwise constraints are
randomly generated from the training set. If two samples belong
to the same class, the relation between them is defined as must-

link constraints; otherwise it is defined as cannot-link constraints.
The others which have not been chosen are unlabeled samples.
We repeat each experiment 50 times independently. The
classification mean error versus constrained number by using
the GP-LVM and the proposed methods are shown in Fig. 6.
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Fig. 5. The digit images visualized with (a) GP-LVM, (b) BC-GP-LVM, (c) SSGP-LVM-M and (d) SSGP-LVM-CM.
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The results in Fig. 6 demonstrate that the proposed semi-
supervised models nearly always achieve the lower mean error
than the traditional GP-LVM. The main reason is that the
proposed models utilize the constrained information, and the
GP-LVM does not use any constraints or label knowledge. In
the three constrained models (SSGP-LVM-M, SSGP-LVM-CM and
SSGP-LVM-CMU), the SSGP-LVM-M which only use the must-link

constraints obtains poor performance compared with SSGP-LVM-
CM and SSGP-LVM-CMU. Therefore only using the must-link

constraints cannot achieve ideally results. By adding the cannot-

link constraints, the SSGP-LVM-CM is superior to the GP-LVM and
SSGP-LVM-M on the three of four data sets, except for Iris data set.
The advantages of the SSGP-LVM-CMU over other methods can be
seen in this experiment. For each dataset, the classification error
rate of the SSGP-LVM-CMU is much lower than other three
dimensionality reduction algorithms. Especially on sonar data set,

the SSGP-LVM-CMU gives the mean error less than 30 percent;
while the mean error which the GP-LVM can offers is always
around 50 percent. That is because that the SSGP-LVM-CMU
utilizes both the pairwise constraints and unlabeled samples.

4.4. Classification accuracy influenced by dimension of constraints

To observe the dependence of the semi-supervised GP-LVM
method on the dimensions of the latent space, we test the
algorithms in different dimensional latent space on three data
sets, i.e., ORL face data, oil data set and handwritten digits data in
this subsection. The pairwise constraints are randomly selected,
and we repeat each experiment 50 times independently. The
percent of constraints is given in the following Table 3.
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Fig. 6. The comparison of classification error rates between the proposed 3 methods and the GP-LVM on 4 data sets with different number of constraints. (a) balance data

(d¼2) (b) iris data (d¼2) (c) oil data (d¼4) (d) sonar (d¼4)
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As shown in Table 3, the numbers of constrained samples in
three data sets are different. Percent of the constrained samples in
each data set is around 30%. The results for three data sets are
shown in Fig. 7.

Fig. 7 shows the plots for mean error vs. number of
dimensions. As can be seen from Fig. 7, the mean errors are
decreasing with increasing dimensions of the latent space. That is,
these curves have the same tendency. Although compared with
the GP-LVM, the advantages of SSGP-LVM-M and SSGP-LVM-CM
are not obvious in Fig. 7(a). The SSGP-LVM-CMU has much more
advantage than other three models. Fig. 7(b) and (c) show the
performance comparison on the oil data set and USPS data sets
respectively. Compared with the GP-LVM, the proposed methods,
especially the SSGP-LVM-CM and SSGP-LVM-CMU, significantly
outperform the traditional GP-LVM for all the three data sets. As
the number of dimension grows, the performance of the proposed
method can keep the advantage consistently.

4.5. Classification accuracy comparison with constraints score

In order to evaluate the performance of the proposed methods
against other semi-supervised method based on pairwise con-
straints, such as constraint score introduced in [28], we use wine,
YaleB face and letter data sets in these experiments. For the letter

data set, we choose the first 5 letters’ samples: ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’.
The pairwise constraints are randomly selected, and each
selection is repeated 50 times independently. The experimental
results on three data sets are shown in Fig. 8.

For the SSGP-LVM-CMU and Constraints Score, we choose the
same number of constraints. For wine data set, the number of
constraints is 20, that is, the numbers of the must-link and cannot-

link are 10. For the second data set, YaleB face database, the
number of constraints is 30 including 15 must-link and 15 cannot-

link. There are 40 constraints selected randomly in letter data set.
By comparing the results shown in Fig. 8, it can be concluded that
the proposed method outperforms significantly, especially for the
last two data sets. For the wine data set, the advantage of the
proposed method is not obvious. This is because that the samples
have a linear structure manifold, and constraints score is a linear
method for feature selection, while the proposed method is a
nonlinear dimensionality reduction model.

In these experiments, we validate the effectiveness of the
proposed semi-supervised GP-LVM on a broad range of bench-
mark data sets, including USPS handwritten digits, oil data set, ORL

face database, YaleB face database and five UCI data sets, i.e., iris,

wine, balance, sonar, letter. The experiments are divided into four
subsections. In the first subsection, the proposed method is
validated in an intuitionist way, where the oil data is mapped into
2-dimensional space. Since the proposed method is based on the
pairwise constraints, the performance may be influenced by the
number of constraints. In the second subsection, we evaluate
the performance of the semi-supervised GP-LVM on the oil data
set and three UCI data sets, including balance, sonar and iris. To
consider the dependence of the semi-supervised GP-LVM method
on the dimensions of the latent space, we test the algorithms
in different dimensional latent space on three data sets, i.e., ORL

face data, oil data set and handwritten digits data in the third
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Fig. 7. The comparison of classification error rates between the proposed 3

methods and the GP-LVM on 3 data sets with different number of dimensions.

(a) ORL data (b) oil data (c) USPS (3,5).

Table 3
Statistics in percentiles of constraints.

Data Total number Class Number of constraints

ORL 400 40 4*40

Oil 1000 3 100*3

USPS(3,5) 300*2 2 100*2
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subsection. In the forth subsection, the comparison experiment is
conducted on wine, YaleB face and letter data sets to illustrate the
superiority of the proposed method over other semi-supervised
method related to pairwise constraints. The experiments on
various datasets validate the superiority of the proposed method.

5. Conclusions

This paper proposes a novel semi-supervised dimensionality
reduction model, i.e., the semi-supervised Gaussian process latent
variable model. It discovers the discriminative structure of the
high-dimensional data in the low-dimensional latent space
through utilizing the pairwise constraints. We also detailedly
describe how to constrain the latent variables with semi-
supervised information. Compared with traditional latent variable
models, the proposed semi-supervised model is much more
discriminative. A great deal of experimental results is provided
to testify the effectiveness of the proposed method. In future
work, we will conduct the theoretical analysis of the proposed
semi-supervised GP-LVM by combining with the graph model
[29,30] with the latent variable model, and establish a general
framework for the semi-supervised latent variable model for
dimensionality reduction problems.
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