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Abstract— In this work, a new algorithm, which can incor-
porate the ranking information as prior knowledge into the
regression model, is presented. Comparing with the method
that treats the ranking information as hard constraints, We
handle ranking reasonably by maximization of Normalized Dis-
count Cumulative Gain (NDCG) as information retrieval (IR)
evaluation measure, which is used to evaluate the performance
of ranking model. In addition, an upper bound of one minus
NDCG is given by weighted pairwise loss, and a connection
between weighted pairwise loss and NDCG is also revealed.
In this paper, RBF regression model and the pairwise shifted
hinge loss and logistic loss are proposed under the suggested
approach. One benefit of the proposed approach is that the
weighted pairwise loss is more reasonable than the unweighted
loss and all the weights are set based on the NDCG. Finally,
one synthetic example shows that the method incorporated the
ranking as hard constraints into regression model may cause
the deteriorated results, but the good performance is shown
by the proposed method. Numerical results from three existing
benchmark regression problems further confirm the beneficial
aspects on the proposed approach.

I. INTRODUCTION

Incorporating prior knowledge to improve the performance
of neural networks is more and more important and is applied
to various applications, such as insufficient quantity and
quality of the training data [1]. However, the issue that
the prior knowledge is incorporated into the model fully
and reasonably is still a topic of research, including the
discussion of the universal method for one type of particular
prior knowledge, such as, monotonicity [1], smoothness [2],
equilibrium points [3][4], symmetric [5], and so on. In this
paper, a new prior knowledge, called ranking, is discovered
and incorporated into the neural networks to improve the
regression model.

Ranking is a relationship between a set of categories such
that, for any two categories, the first is either ‘ranked higher
than’, ‘ranked lower than’ or ‘ranked equal to’ the second,
e.g. website are ranked by the relevance of keywords. But
this is known as a weaker order, because the ranking only
contains the order information of the objects but not the real
distance between objects. In fact, in real-world problems, lots
of ranking information can be created and available easily.
As an example, we consider the task of predicting real estate
prices. The users or experts always rate the housing prices
by giving the overall characteristics of houses. They can
independently give the scoring or ranking of these housing
prices roughly according to the features of these houses, such
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as, area, location, number of bedrooms, etc. For example, if
everything else is roughly equal, then the scoring of a 3-
bedroom house is higher than a 2-bedroom one. Therefore,
our idea is to incorporate this kind of ranking information
as prior knowledge into the design of neural networks for
improving the performance of the models. In [6], semi-
supervised learning with order preferences is proposed to
show the improvement, but the ranking information is not
considered in it. So in this paper, the algorithm incorporated
ranking into the neural networks is proposed.

However, significant differences appear on the numerous
approaches for incorporating prior knowledge into the design
of neural networks [7][8][9][13]. In [7], four categories of
approaches, which are using prior knowledge to prepare
training example, initiate the hypothesis, alter objective and
augment search, have been classified for incorporating prior
knowledge into inductive machine learning. This is referred
to as learning with constraints, as addressed by [8]. For better
understanding the principles of embedding prior knowledge,
the authors in [9] have summarized three basic types for
examining the individual approach, such as, structure types
[10], algorithm types [11], and data types [12]. From the
perspective of explicitness of the models, the three types of
embedding principles are ranked in a decedent order. For
the maximum utilization of prior knowledge in an explicit
means, they proposed a generalized constraint neural network
(GCNN) [13] model. However, ranking, as a special prior
knowledge, is the central problem for information retrieval
(IR) applications. Therefore, different from the above meth-
ods, the IR evaluation measure has been used to incorporate
the ranking information into the neural network in this paper.

The present paper explores how to add ranking prior
knowledge into the conventional neural networks and pro-
poses the algorithm, which reasonably uses the maximization
of NDCG as IR evaluation measure, to incorporate the
ranking into neural networks. The relationship of NDCG and
pairwise loss is given, and an upper bound of one minus
NDCG is presented by weighted pairwise loss [14]. In this
paper, the pairwise loss, such as hinge loss and logistic loss,
will be the main concerned to incorporate the ranking prior
knowledge into networks for improving the accuracy and
interpretability of the models.

The paper is organized as follows. In the next section we
introduce the algorithms of conventional RBF and the loss
functions of ranking algorithms briefly. The main contribu-
tion of this paper is that a new approach for incorporating
ranking prior knowledge into models is presented, and two
pairwise losses are used under this approach in Section III.
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In Section IV, experiments on one synthetic example and
three benchmark datasets are shown to validate the proposed
method. The conclusion and future work are presented in the
last section.

II. RELATED FORMULAS

A. Conventional RBF

RBF networks are used in a variety of applications because
they are universal function approximators which can learn
unknown functional relationships. Consider a training set
T = {xl, yl}l=1,2,··· ,N , where xl ∈ R1×n is an input vector,
yl ∈ R denotes the vector of desired network outputs for the
input xl and N is the number of training set. The output of
the RBF network is calculated according to

f(x) = Φ(x)W (1)

where f(· ) is the output, W = [ω0, ω1, . . . , ωh]T are the
weights of the network, and Φ(x) = [1, φ1(x), . . . , φh(x)],
h is the number of neurons in the hidden layer, and φi(·)
is a basis function of the RBF network. In this paper,
the Gaussian RBF: φı(x) = exp(−‖x − cı‖2/σ2

ı ), ı =
1, 2, . . . , h is discussed, where cı ∈ R1×n are the RBF
centers and parameter σı controls the ”width” of the RBF.
The most common approach is to determine the centers and
widths of the radial basis functions at first, then the weights
are estimated subsequently. Some effective methods [15][16]
and simple heuristic relationship [17] have been introduced
to determine the centers and the widths, respectively.

Once the centers and widths are chosen, the network
training task is changed to determine the appropriate settings
of the weights between the neurons. Therefore, the optimal
set of weights minimizes the performances measure

min
W∈Rh+1

: E(W) =
1
2
(y −ΦW)T (y −ΦW) (2)

where y = [y1, · · · , yN ]T ∈ RN×1 denotes the com-
ponent of vector of desired network outputs and Φ =
[ΦT (x1),ΦT (x2), . . . ,ΦT (xN )]T ∈ RN×(h+1)(the first
row is 1). In order to avoid over-fitting, we control the
complexity of the neural network model by the addition
of a regularization term to the error function. The simplest
regularizer is the quadratic, giving a regularized error of the
form

min
W∈Rh+1

: E(W) =
1
2
(y −ΦW)T (y −ΦW) +

λ

2
WTW

(3)
where λ is the regularization coefficient, which can determine
the model complexity. Gradient descent methods or linear
least squares strategies can be used to determine the weights
of the Eq. (3). Due to the speed and accuracy of the
training, linear least squares algorithm is used in this paper.
Minimizing the performance measure E(W) is achieved by

∂E(W)
∂W

= −ΦT (y −ΦW) + λW = 0 (4)

Solving for W, we have

W = [ΦT Φ + λI]−1ΦTy (5)

where I is the identity matrix. From (5) the weights of RBF
network are determined and the problem of network training
can have a closed-form solution.

B. Learning to Rank

Learning to rank is aimed at creating the ranking model
using the training data and machine learning techniques.
Many methods have been proposed to address the problem
of learning to rank [18][19] and applied to information
retrieval (IR) [18][20]. At first, we give some notations. Let
X = {x1, . . . ,xp} be the input space of the objects set,
which we are interested in ranking, Y = {y1, . . . , yp} be the
output space representing the levels of relevance of objects as
the ground truth list. Let F be the function class, f ∈ F, and
let y(i) be the index of object which is ranked at position i.
The task is to learn a ranking function from the training data
by minimization of a loss function. The pairwise algorithms
and listwise algorithms are two state-of-the-art approaches.

In the pairwise approach, the problem of learning-to-rank
is approximated by a binary classification problem, which is
mainly to find which object is better in a given pair of objects.
The goal of this approach is to minimize average number of
inversions in ranking. The loss function is defined as:

L(f ;X,Y) =
p−1∑
i=1

p∑
j=1,y(i)<y(j)

l(f(xi)− f(xj)) (6)

where different functions l(· ) are used in different pairwise
ranking algorithms. For example, Ranking SVM [19], hinge
loss l(x) = max(1 − x, 0); and in RankNet [18], logistic
loss l(x) = log(1+e−x). In the listwise approach, it directly
takes ranked lists of objects as instances and trains a ranking
function through the minimization of a listwise loss function
defined on the predicted list and the ground truth list. The
ListMLE [21] is one example of listwise approach. In this
paper, the loss function of pairwise approach will be mainly
concerned to handle the ranking.

In addition, in order to measure the performance of a
ranking model, IR evaluation measures, such as Mean Aver-
age Precision (MAP) and Normalized Discount Cumulative
Gain (NDCG), are widely used [22][23]. MAP can only
handle cases with binary judgment: ”relevant” or ”irrelevant”,
while NDCG can handle multiple levels of relevant judgment.
Therefore, we give the definition of NDCG value of a ranking
list as follow:

NDCG(π, R) =
1

Np

p∑
j=1

2rj − 1
log(1 + j)

, (7)

where rj is the relevance of the jth object in the ranking
list π and R is their ground truth permutation, and Np is a
normalizer to ensure NDCG ∈ [0, 1]. In a perfect ranking
algorithm, NDCG is 1.0.

III. RBF NETWORKS WITH RANKING PRIOR

As seen in previous section, the training data with target
value are used to learn unknown function relationships by
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conventional RBF network, and the training data with rele-
vance label of object are used to create the ranking model by
approaches of learn-to-rank. In this section, a new approach,
which is aimed at incorporating the ranking information into
the network, is proposed.

At first, we give some notations. Consider a training set
T = (xl, yl)l=1,2,··· ,N , where yl denotes the target value
of the input vector xl and N is the number of training
set. The ranking data P = (xj , rj)j=1,2,··· ,p, where rj ∈
{1, 2, . . . , K} is the relevance label of input vector xj and p
is the number of ranking data. The ranking data satisfy the
following condition: f(xi) > f(xj), if ri < rj , i, j ∈ P ,
where f(· ) is defined by Eq. (1), which is the key point,
because the function f(· ) is defined not only our regression
model but also the ranking scoring function. That is to say, it
can connect the ranking to the regression model in regression.
For simplicity, we assume that ri �= rj , ∀i �= j, i, j ∈ P . Be-
cause the ranking data only contain the ranking information
rather than the target value of the data, it is weaker. But we
would like to use the ranking data to improve the regression
model. However, the pairwise algorithms and the listwise
algorithms are the main approaches to deal with the ranking
information in learn-to-rank. In this paper, the pairwise
approaches are used to handle the ranking information. That
is to say, the ranking information has been divided into pairs
of ranking [f(xi), f(xj)], ri < rj , i, j ∈ P , which means the
scoring function f(xi) is larger than f(xj).

According to the summary in [9], there are many types
of schemes, such as generalized constraint neural network
(GCNN), regularization theory and virtual examples, all of
which can embed ranking as prior knowledge into systems.
A simple and natural way is to treat the pairs of ranking
as constraints to embed the regression model. Therefore, the
pairs of ranking can be incorporated into the RBF (3), by
adding the ranking as constraints to it as follows

min
W

: J(W) = E(W; T )

s.t. ysi(Φ(xs)W−Φ(xi)W) � 0,
p � i > s � 1.

(8)

where ysi denotes sign[ri − rs], which is used to satisfy
the condition of ranking. This linear constrained quadratic
programming will ensure that each of the pairs of ranking
can maintain their original position. However, the pair of
ranking is the order relationship rather than a hard constraint.
So the above way to add the ranking into the model misun-
derstand the meaning of ranking, much less use the ranking
information fully and reasonably. We would like to use a
reasonable manner to handle the ranking information. Due
to ranking is our main concerned, the NDCG is the criterion
to measure the performance of a ranking model. Therefore,
the NDCG criterion is a good choice to incorporate ranking
into regression model in this paper. In this section, we will
utilize the NDCG criterion to derive the algorithm that can
incorporate the ranking into the RBF network reasonably.

We add the NDCG criterion as regularization to RBF
model. But in ranking the maximization of DNCG is used to

optimize for a good ranking model. Because the NDCG ∈
[0, 1], the minimization of (1−NDCG) is added to the RBF
model. Therefore, according to the standard error function of
RBF network, we have

min
W

: J(W) = E(W; T ) + μ(1−NDCG(W; P )) (9)

where E(W; T ) is an error function defined by Eq. (3), μ
is a weight of regularization and NDCG(W; P ) is defined
by Eq. (7). The objective function, which can deal with the
ranking reasonably, is given by above formula, but such
problem is still hard to optimize, because the NDCG is
dependent on the ranking position of objects induced by
the ranking function, not the numerical values output by
the ranking function. Therefore, we will do further analysis
on NDCG and hope to obtain an equivalent form optimized
easily from the above problem.

Let ranking data set be P and their ground truth per-
mutation be R. The ranking is divided into several sub-
ranking lists, and for each sub-ranking s, let xR(s) be the
object ranked at s position in R and π(xR(s)) stand for
the rank position of the object xR(s) by π, which is an
instance of ranking, and other objects, which are denoted
as Ps = {xR(s), . . . , xR(p)}, are all ranked below s position
in R. Therefore, at each step s, we have the loss

ls(f ; Ps, R) = Zs

p∑
i=s+1

l(f(xR(s))− f(xR(i)))

= 1− Zs

p∑
i=s+1

l(f(xR(i))− f(xR(s)))

= 1− l̄s
(10)

where Zs is a normalizer to ensure ls, l̄s ∈ [0, 1]. If ls = 0,
that is l̄s = 1, then π(xR(s)) < π(xR(i)) for ∀i > s.

According to the definition of NDCG in (7), the loss
function in (6) and Eq. (10), we have the weighted pairwise
loss function

L(π, R) =
p−1∑
s=1

α(s)ls (11)

where α(s) is the weight to stand for the importance of the
loss ls at step s, and if α(s) = 1/Zs, s = 1, · · · , p− 1, then
the Eq. (11) is the general ranking loss function (6).

Theorem 3.1: If α(s) =
2Rs − 1

Nplog(R(s) + 1)
, then we have

(1 −NDCG) � L(π, R).
Proof: According to the Eq. (7), we have

1−NDCG

=
1

Np

p∑
s=1

[
2Rs − 1

log(s + 1)
− 2πs − 1

log(s + 1)
]

=
p∑

s=1

2Rs − 1
Np

[
1

log(s + 1)
− 1

log(π(xR(s)) + 1)
]

Because the position of object xR(p) at permutation π must

be no more than p, that is π(xR(p)) � p, then
1

log(p + 1)
�

3007



1
log(π(xR(p)) + 1)

. Therefore, we can get

1−NDCG

�
p−1∑
s=1

2Rs − 1
Nplog(s + 1)

[1− log(s + 1)
log(π(xR(s)) + 1)

]

Due to l̄s � 1, and we can obtain that

1−NDCG �
p−1∑
s=1

α(s)[1 − log(s + 1)
log(π(xR(s)) + 1)

l̄s]

where α(s) =
2Rs − 1

Nplog(s + 1)
. In addition, according to the

Eq. (10), for each step s, if l̄s = 1, then f(xR(s)) > f(xR(i)),
that is π(xR(s)) < π(xR(i))) for ∀i > s. In other words,
at each step s, all objects, which are all ranked below s
position in R, are still ranked below the object xR(s) in the
ranking π. Therefore, we have π(xR(s)) � s, and we can get
log(π(xR(s)) + 1) � log(s + 1). So we can obtain that

1−NDCG �
p−1∑
s=1

α(s)[1 − l̄s] =
p−1∑
s=1

α(s)ls

The above theorem not only gives the direction to solve
the problem (9), but also provides the connection between
the pairwise algorithms loss function and the NDCG. In
other words, the minimization of (1 − NDCG) can result
in the minimization of the weighted pairwise algorithms
loss, and the weighted pairwise loss is an upper bound of
(1 − NDCG). The similar result of above has also been
given in [14].

According to the Theorem 3.1, the loss of (9) is rewritten
as

min
W

: J(W) = E(W; T ) + μL(W; P ) (12)

where L(W; P ) is defined by Eq. (11). Up to now, the task
that the ranking is incorporated into the RBF network has
been completed basically. Additionally an upper bound of
the loss function (9) is also given by the above equation. In
fact, the Eq. (12) provides us a new approach to incorporate
the ranking as prior knowledge into the networks. Margin-
based convex surrogate loss, such as hinge loss, exponential
loss and logistic loss, can be used to optimize the above
convex loss. In this paper, the shifted hinge loss and logistic
loss will be used to express our approach, which can also be
used by other loss functions.

A. Pairwise Hinge Loss

In this section, the shifted hinge loss function is used to
the proposed approach. Once the loss function is selected,
the specific form of the L(W; P ) in (12) can be given as
follows

L(W; P ) =
p−1∑
s=1

α(s)Zs

p∑
i=s+1

[1−C(f(xR(s))−f(xR(i)))]+

(13)

where α(s) is defined by the Theorem 3.1, C is a normalizer
to ensure (f(xR(s)) − f(xR(i))) ∈ [−1, 1] and [x]+ =
max(x, 0). Note that the shifted hinge loss we used is
[1 − Cx]+, which is different from the pairwise hinge loss
[1− x]+. The main reason is that in pairwise ranking model
the predictive function f is denoted as the classifier, which
do not care about the real values of the objects but their
signs, while in our regression model the target values are
our mainly concerned. So on the basis of definition of hinge
loss, if f satisfies all the ranking data, L(W; P ) should be
zero; and if f violates some, the loss will increase. So we
give the normalizer C to keep the rules.

We transform (13) into a quadratic program by adding
auxiliary variables εsi and put it into the Eq. (12). Therefore,
the quadratic program for incorporating ranking into RBF
regression model is

min
W,εsi

: JH(W) = E(W; T ) + μ
p−1∑
s=1

β(s)
p∑

i=s+1

εsi

s.t. Φ(xR(s))W −Φ(xR(i))W � 1
C
− εsi

p � i > s � 1,
εsi � 0.

(14)
where β(s) = Cα(s)Zs. From the above equation we can
see that the auxiliary variables are weighted, which is more
reasonable than the unweighted variables. In addition, the
weights can be determined easily by the NDCG, which is also
more reasonable than them set by randomly or empirically.
Another feature, which is different from other algorithms, is
the constant coefficient 1/C rather than zero. For example,
consider an order relationship between two instances as
f(xi) > f(xj). In general algorithms, this order is added to
those approaches as constraint f(xi)− f(xj) � 0. But it is
an order relationship rather than a hard constraint. Therefore,
it is more reasonable that constant coefficient 1/C is added
to soft the constraint.

In order to optimize the problem (14) conveniently, ac-
cording to the conditions of Karush-Kuhn-Tucker (KKT),
the dual problem can be obtained and written in the form
of vector as follows

max
Θ

: JDH(Θ) = ZΨTΘ− 1
2
ΘΨH−1ΨT Θ

s.t. μβ(s) � θsi � 0, p � i > s � 1.
(15)

where Θ = [θ12, . . . , θ1p, θ21, . . . , θ(p−1)p]T is the vector of

Lagrange multipliers, H = ΦTΦ+λI, Z =
1
C

I−yT ΦH−1,

and Ψ = [(Φ(xR(1)) − Φ(xR(2)))T , . . . , (Φ(xR(s)) −
Φ(xR(i)))T , . . . , (Φ(xR(p−1))−Φ(xR(p)))T ]T , p � i > s �
1. Therefore, the linear constrained RBF network training
algorithm (Algorithm 1) in [4] can be used to solve the above
dual problem. And jmax can be calculated by

jmax = arg min
j∈I\Sk,θj<0

{JDH(Θ(k)), Sk ← j ∪ Sk} (16)

Finally, the problem (14) can be solved and the regression
model can be obtained.
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Algorithm 1 Linear Constrained RBF Network Training

1: given active set S1 ← ∅, k ← 1;
2: obtained Θ(k) from

max
Θ(k)

: JDH(Θ(k))

s.t. θ
(k)
j = 0, j ∈ Sk

a. if ∃j ∈ I \ Sk and θj < 0, then jump 3;
b. else if Lagrange multipliers of dual problem

υ
(k)
j � 0, ∀j ∈ Sk ∩ I , then the algorithm stop;

c. else calculate jk by solving

υ
(k)
jk

= min
j∈Sk∩I

υ
(k)
j < 0,

Sk ← Sk \ {jk}, jump 4;

3: find j ∈ I \ Sk and θj < 0, then Sk ← Sk ∪ {jmax},
jump 2;
4: Sk+1 ← Sk; k ← k + 1; jump 2.

B. Pairwise Logistic Loss

In this section, another pairwise loss function, called
logistic loss, is used in the suggested method to explain
further that our proposed approach is an universal approach
rather than a special case. According to logistic loss function,
the specific form of the L(W; P ) in (12) can be given as
follows

L(W; P ) =
p−1∑
s=1

β(s)
p∑

i=s+1

log(1 + e−(f(xR(s))−f(xR(i))))

(17)
where β(s) = α(s)Zs. Putting the above form into (12)
directly, the final form, which incorporates the ranking in-
formation into the RBF regression model with logistic loss,
can be obtained as JL(W). Because the logistic loss function
is continuous and differentiable, the optimization algorithm
adjusts the weights iteratively based on the loss gradient

Wk+1 = Wk − η
∂JL(W)

∂W
|(W=Wk) (18)

where k is the epoch index, η is the learning rate, and the
loss gradient ∂JL(W)/∂W is

∂JL(W)
∂W

=
∂E(W)

∂W
+

∂L(W)
∂W

(19)

where ∂E(W)/∂W is defined by (4) and ∂L(W)/∂W is

∂L(W)
∂W

=
p−1∑
s=1

β(s)
p∑

i=s+1

−tsi(Φ(xR(s))−Φ(xR(i)))T

1 + tsi

where tsi = e−(f(xR(s))−f(xR(i)). Therefore, the gradient
descent algorithm (Algorithm 2) can be used to adjust the
weights. So the regression model can also been obtained by
above algorithm.

The above mentioned methods are all used in the RBF
regression model. In fact, other nonlinear regression models
can also be used in the proposed approach (12), such as
general neural networks regression model, SVR and so on.

Algorithm 2 Gradient Descent Algorithm

1: given ε, η, W1, k ← 1;

2: compute∇Jk
L =

∂JL(W)
∂W

|(W=Wk) by (19), if ∇Jk
L �

ε, then the algorithm stop;
3: update the weights by (18);
4: k ← k + 1, jump 2.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.0

−0.5
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x
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RBF−CR
RBF−HR
RBF−LR
sinc

Fig. 1. The results of RBF, RBF-CR, RBF-HR and RBF-LR in example A.
10 points generated from sinc function added Gaussian noise N(0, 0.22),
and is ranked based on their values. But this ranking is used as prior without
the true target values. + and ⊕ stand for the training data and ranking data,
respectively.

In addition, more than one ranking list can also be handled
by this approach, and the only work we do is to calculate
all losses L(W; P l)|l=1,2,...,M of the ranking lists, where
each P l stands for one ranking list data, and put all of them
together as the total loss. Therefore, in this paper, we only
take RBF network and one ranking list as an example to
propose the new approach, which can incorporate ranking
list reasonably. Other regression models and several ranking
lists used in the suggested approach are only the extension
and applications.

IV. SIMULATIONS AND CONSIDERATIONS

In this section, an extensive experimental study of the
proposed method on artificial and real-world data sets is pre-
sented. The first one is synthetic example that is performed
to demonstrate the effectiveness of the proposed method; the
others show the benefit of the method on three real-world
data sets. For each example, we used 10-fold cross validation
to find the optimal size of RBF network h, and RBF centers
and widths were selected by kcenter and simple heuristic
relationship [17], respectively. We used the acronym RBF
(conventional RBF) for (3), RBF-CR(RBF with ranking as
constraints) for (8), RBF-HR (RBF with ranking as hinge
loss) for (12) with hinge loss and RBF-LR (RBF with ranking
as logistic loss) for (12) with logistic loss. The mean squared
error (MSE) is defined below

MSE =
1
N

N∑
i=1

(yi − ŷi)2 (20)
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TABLE I

COMPARISON OF PERFORMANCE FOR RBF, RBF-CR, RBF-HR AND

EBF-LR IN EXAMPLE A. (Ntest = 200, AND NOISE N(0, 0.22))

Total Num. of
Model p Ntrain Free Para. MSE(Mean/Var.)

RBF 0 20 8 0.0276/0.0188

RBF-CR 10 20 10 0.0342/0.0329

RBF-HR 10 20 9 0.0148/0.00714

RBF-LR 10 20 9 0.0212/0.0110

where yi and ŷi represent the observations of network output
and the model predictions, respectively.

A. A synthetic example

In this section, we use a synthetic example to illustrate the
effectiveness of the ranking information as prior knowledge.
To get data from [24], sinc is given as follows

sinc =
sin(x)

x
, x ∈ [−10, 10]. (21)

20 training data were generated uniformly from the function
(21) added with Gaussian noise of zero mean and standard
deviation 0.2, and 200 testing data were also generated from
the same function without any noises. Due to the lack of
the training data and noise, conventional RBF network could
not work well. In Fig. 1, we can see that the outputs of
the conventional RBF network (solid black line) are very
different from the target function’s (dot dash red line).

In order to show the improvement of our method, we
randomly selected 10 points generated from sinc function
added with the same Gaussian noise N(0, 0.22), ranked
these points based on their values, and used this ranking
information as the prior knowledge without the true target
values. We did not know the actual target values of these
points, but we would like to use the ranking to improve
the regression model. Therefore, the proposed approach (12)
was used to deal with this problem, and hinge loss and
logistic loss were used to validate the new approach. For
this experiment we used 10-fold cross validation to find the
optimal weights λ and μ.

Fig. 1 shows the outputs of RBF network with and without
ranking data. At around points of x = −5, the function
approximation of conventional RBF, caused by noise and
lack of training data, can not work well and RBF-CR also
can not deal with this problem well, while the approximation
can be improved in the proposed model by the ranking. From
Table I the proposed methods with ranking can be improved
indeed, but RBF-CR causes a larger testing MSE, which
verify that incorporating ranking into the model by using hard
constraints is unreasonable. Because the ranking information
is only the order of the target values in these points, rather
than the true distance among their targets or hard constraints.
In fact, the main reason is that ranking data have noise, and
the noise is imposed to the model by treating ranking as
hard constraints. In addition, Due to the ranking information
just contains the order of these points, the ranking as prior

TABLE III

CHARACTERISTICS OF DATA SETS

Data Set Name N d Target Feature

Pollution 60 16 Mortality rate

Boston Housing 506 14 MEDV

California Housing 20640 9 House price

knowledge is weaker, and the improvement by this prior is
limited. But we would like to know what influence it has on
the regression model if we change the number of training
data; what if we change the number of ranking data; and
what if we change the standard deviation of noise?

All experiments were repeated for 20 random trials, and
different approaches shared the same data, including Ntrain

training data, p ranking data and 200 test data. Fig. 2 ad-
dresses the above three questions. With the increasing of the
number of training data, the improvements of the proposed
approaches decrease in Fig. 2 (a). Because of the increasing
of training data, the model has a good performance, and the
benefit from the ranking diminishes. Another reason may be
that increasing of training data leads to more weaker ranking
data. Anyway, the proposed approaches are useful when
training data are scarce. Many weak prior knowledge is likely
to be a strong prior. In Fig. 2 (b) shows that the benefit is
getting better as the weak ranking grows. In Fig. 2 (c), as the
noise increases, the proposed approaches compared with con-
ventional RBF still have good performance. In addition, in
Fig. 2, we can see that RBF-CR causes a larger testing MSE
in most cases, which further illustrates that hard constraints
misunderstand the ranking information and RBF-CR can not
improve the model with ranking. However, the suggested
methods can achieve it. Therefore, according to this example,
the proposed method can improve the approximation. When
the number of ranking increase or training data are scarce,
the improvement will be better.

B. Benchmark datasets

In this section, the results from a comparative study
of RBF-HR, RBF-LR and conventional RBF algorithms
using real-world data sets (Available at http://funapp.cs.
bilkent.edu.tr/DataSets/) are reported (Because RBF-CR is
not a good method to incorporate ranking into regression
model, it does not attend in this example). Table III gives
the characteristics of the data sets, where N is the avail-
able number of observations and d denotes the number of
attributes, which means the dimensions of the observations.
In the last column, the names of target features are presented.

In fact, prior knowledge should be prepared and obtained
by expert system in advance. However, in this paper, in order
to demonstrate the effectiveness of the suggested method, p
observations, which are one part of data set and are not used
in training data or testing data, will be used to generate the
simulated ranking information. So the whole data set will be
divided into three parts: p prior observations, Ntrain training
data and Ntest testing data. Note that the true values of p
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Fig. 2. Example A: A synthetic example. The influences from different Ntrain, p and standard deviation of noise σnoisy on the performance of model
are shown in this Fig. When p = 10 and σnoisy = 0.2 are fixed, different effects vary from different Ntrain in (a). If Ntrain = 20 and σnoisy = 0.2
are fixed, the improvement is affected by the changing of p in (b). When p = 10 and Ntrain = 20, (c) shows the effects from the different σnoisy .

TABLE II

COMPARISON OF MODELING PERFORMANCE FOR RBF, RBF-HR AND RBF-LR IN EXAMPLE B. THE ERROR MEANS AND STANDARD DEVIATION OF

THE MSE ON THE 20 GROUPS OF TEST DATA.

MSE(Mean/Var.) RBF-HR RBF-LR

Data Set p Ntrain Ntest RBF RBF-HR RBF-LR Impro. Impro.

Pollution 10 10 40 0.0672/0.0326 0.0411/0.0118 0.0466/0.0152 38.8% 30.6%

Boston Housing 20 20 466 0.0496/0.0138 0.0390/0.00379 0.0421/0.00925 21.4% 15.1%

California Housing 20 20 20600 0.0818/0.0258 0.0576/0.00534 0.0605/0.00874 29.6% 26.0%

prior observations are never given out.

Each data set is randomly divided into three collections:
p prior observations, Ntrain training data and Ntest testing
data. The specific values of the parameters in different data
sets are shown in Table II. A standard RBF is trained on these
data without any prior, while our model with the ranking
information. For contrast, the target feature of each data
set was normalized in [0, 1], which was also handled in
the similar way in [25]. We used 10-fold cross validation
to find the optimal weights λ and μ. The parameters were
tuned on a 10 × 10 logarithmic grid in 10−2 � λ � 102

and 10−3 � μ � 103. The programming ran 20 times for
getting 20 groups of test MSE. Table II shows the average
and standard deviation of the 20 test MSE. From the table,
we can see that the proposed model not only can decrease
the average of test MSE, which means the accuracy has been
improved, but also can decrease the standard deviation of the
test MSE, which means the generalization capability has been
improved. Therefore, the suggested method can achieve high
performance when ranking information is used for learning.

In order to validate the problems raised in Example A, for
each data set, we did the similar experiments. Fig. 3 shows
the experimental results for each data set. The results are
consistent with Example A’s. With the increasing of training
data, the improvement of the proposed approach decreases.
The benefit from the ranking is getting better as the ranking
data grow. In addition, from these three data sets, we can find
that if the testing MSE is large, which means the training data
have too much noise, the improvements of proposed methods

are more obvious, such as California data; if the training
data are scarce, the benefit from ranking is better, such as
Pollution data; otherwise the improvements are general, such
as Boston data. Therefore, the proposed methods are very
useful when training data are scarce or the training data have
large noise.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a new approach, which incor-
porates the ranking information into the regression model.
In the process of handling ranking, the relationship between
NDCG and pairwise loss is given, and an upper bound of
one minus NDCG is presented. In addition, the RBF model
and pairwise shifted hinge loss and logistic loss are used
under the proposed approach in this paper. Comparing with
the conventional regression model, the proposed methods can
improve the performance of the model, and the benefit is
getting better, when the training data are scarce or have large
noise, or the ranking data grow. One synthetic example and
three benchmark regression problems demonstrated it.

Because pairwise losses are used in this paper, the listwise,
which can directly handle the ranking list of objects as
instances, will be expanded into the proposed approach for
the future work.
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Fig. 3. Example B: Benchmark example. The influences from different Ntrain and p on the performance of proposed model are shown in this Fig. The
values of Ntrain and p are from the Table II. When one is fixed, the benefit of the ranking varies from the changing of the other one.
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