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a b s t r a c t

The classification performance of nearest prototype classifiers largely relies on the prototype learning

algorithm. The minimum classification error (MCE) method and the soft nearest prototype classifier

(SNPC) method are two important algorithms using misclassification loss. This paper proposes a new

prototype learning algorithm based on the conditional log-likelihood loss (CLL), which is based on the

discriminative model called log-likelihood of margin (LOGM). A regularization term is added to avoid

over-fitting in training as well as to maximize the hypothesis margin. The CLL in the LOGM algorithm is

a convex function of margin, and so, shows better convergence than the MCE. In addition, we show the

effects of distance metric learning with both prototype-dependent weighting and prototype-

independent weighting. Our empirical study on the benchmark datasets demonstrates that the LOGM

algorithm yields higher classification accuracies than the MCE, generalized learning vector quantization

(GLVQ), soft nearest prototype classifier (SNPC) and the robust soft learning vector quantization

(RSLVQ), and moreover, the LOGM with prototype-dependent weighting achieves comparable

accuracies to the support vector machine (SVM) classifier.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Nearest neighbor classification [1] is a simple and appealing
non-parametric method for pattern classification. It does not need
any processing of the training data, but involves heavy burden of
storage space and computation in classification. Prototype learn-
ing is to represent the training data with a set of points in feature
space, called prototypes. A test point x is then classified to the
class of the closest prototype. To reduce the number of
prototypes, many prototype selection and prototype learning
methods have been proposed [2–7]. By selecting or synthesizing
prototypes that better represent the class distributions or decision
boundaries, these methods are also effective to improve the
classification accuracy. The nearest neighbor classifiers with
reduced prototypes are also called nearest prototype classifiers.
They have been widely used in applications such as character
recognition [7], text categorization [8], classification of mass
spectrometry data [9], and so on.

Learning vector quantization (LVQ) [10] is a well known
prototype learning algorithm which offers intuitive and simple,
yet powerful learning capacity in supervised learning. Kohonen
proposed a number of improved versions of LVQ such as LVQ2,
010 Published by Elsevier Ltd. All

liucl@nlpr.ia.ac.cn (C.-L. Liu),
LVQ2.1, and LVQ3 [3]. Crammer et al. [11] show that LVQ falls in a
family of maximal margin learning algorithms providing a
rigorous upper bound of generalization error. Although the LVQ
algorithm yields superior classification performance, it does not
guarantee convergence in training [4]. The performance of LVQ
depends on several factors: the initialization of prototypes, the
distance metric, and the selection of informative patterns, etc.

To improve the training and generalization performance of
LVQ, many extensions or variants have been proposed. In [12], an
initialization insensitive LVQ algorithm uses a harmonic average
distance instead of the usual nearest-neighbor distance. Sato and
Yamada proposed a generalized LVQ (GLVQ) algorithm [4], where
prototypes are updated based on a continuous and differentiable
loss function. The generalized relevance LVQ (GRLVQ) algorithm
[13] introduces the adaptive weighted metric to extend the GLVQ,
by adding a prototype-independent weight to each input dimen-
sion indicating its relevance. Similarly, the algorithm of Paredes
and Vidal [14] learns prototypes and distance metric simulta-
neously using a misclassification loss function. In [15], the
combination of pattern selection and weighted distance norm is
explored. It selects an update set composed of points that are
considered to be at the risk of being captured by a prototype of a
different class.

Many prototype learning algorithms based on loss minimiza-
tion have been shown to give higher classification accuracies than
LVQ [7]. These algorithms include the minimum classification
error (MCE) method [16], the generalized LVQ (GLVQ) [4], the
rights reserved.
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Table 1
List of acronyms.

Acronym Full name

CLL Conditional Log-likelihood Loss

GLVQ Generalized Learning Vector Quantization

GRLVQ Generalized Relevance LVQ

LOGM LOG-likelihood of Margin

LVQ Learning Vector Quantization

MAXP MAXimum class Probability

MAXP1 A variant of MAXP

MCE Minimum Classification Error

RBF Radial Basis Function

RSLVQ Robust Soft Learning Vector Quantization

RSLVQ1 A variant of RSLVQ

SNPC Soft Nearest Prototype Classifier

SVM Support Vector Machine

X.-B. Jin et al. / Pattern Recognition 43 (2010) 2428–2438 2429
maximum class probability (MAXP) method [7], the soft nearest
prototype classifier (SNPC) [17] and the robust soft learning
vector quantization (RSLVQ) [18], etc. The MCE and GLVQ
methods minimize margin-based loss functions, while the MAXP
and SNPC formulate multiple prototypes in a Gaussian mixture
framework and aim to minimize the Bayesian classification error
on training data. Similarly, the RSLVQ optimizes the conditional
log-likelihood loss (CLL) within a Gaussian mixture framework.
The misclassification loss of [14] is similar to those of MCE and
GLVQ. The margin-based algorithms, including LVQ, MCE and
GLVQ, adjust only two prototypes on a training sample. The
training complexity of the MAXP, SNPC and the RSLVQ method
can be similarly decreased by pruning prototype updating
according to the proximity of prototypes to the input pattern or
using the windowing rule like the LVQ2.1.

In this paper, we investigate into the loss functions of
prototype learning algorithms and aim to improve the classifica-
tion performance using a new form of loss function. The
misclassification loss functions of MCE, GLVQ and the one in
[14], based on the nearest prototype from the genuine class
(correct class) of input pattern and the one from incorrect classes,
are smoothed functions of the traditional 0–1 loss, while the
direct minimization of the 0–1 loss is computationally intractable
[19]. The MAXP algorithm [7], the SNPC method [17] and the
RSLVQ [18] approximate the misclassification rate in the frame-
work of Gaussian mixture. We will discuss the relationships
between these algorithms under certain conditions.

We propose a new prototype learning algorithm by minimizing
a conditional log-likelihood loss (CLL), called log-likelihood of
margin (LOGM). The convexity of margin-based loss in LOGM
ensures that there exists a unique maximum margin. We also add a
regularization term to the loss function for avoiding over-fitting in
training as well as maximizing the hypothesis margin. The proposed
method can be easily extended to a weighted distance metric
instead of the Euclidian distance to incorporate the relevance of
features. We have extended the LOGM algorithm for prototype
learning with both prototype-dependent weighting and prototype-
independent weighting. Our empirical study on a large suite of
benchmark datasets demonstrates that the LOGM is superior to the
MCE, GLVQ, SNPC and RSLVQ methods, and moreover, the LOGM
with prototype-dependent weighting achieves comparable accura-
cies with the support vector machine (SVM) classifier.

The rest of this paper is organized as follows: Section 2 gives the
formulation of prototype learning algorithms; Section 3 briefly
reviews the MCE and SNPC methods; Section 4 presents a prototype
learning algorithm (LOGM) based on the margin-based conditional
log-likelihood loss and extends the LOGM to prototype learning
with weighted distance metric; Section 5 discusses the relation-
ships between our algorithm with previous ones and their
convergence; Section 6 presents our experimental results and the
last section concludes the paper. This paper is an extension to our
previous conference paper [20] by adding the discussions of
relationships with other methods, the analysis of learning conver-
gence and generalization, and the extension to prototype learning
with weighted distance metric. Throughout the paper, we use many
acronyms, which are listed in Table 1 for readers’ convenience.
2. Formulation of prototype learning

For L-class classification, prototype learning is to design a set
of prototype vectors fmls; s¼ 1;2; . . . ; Sg1 for each class l. An input
pattern xARd is classified to the class of the nearest prototype.
1 S can vary with different classes. For simplicity, we consider the case of equal

number of prototypes per class.
The choice of distance metric is influential to the classification
performance, but we first focus on the loss function of the
prototype learning under the Euclidean distance and will then
explore the effect of the weighted distance metric.

For learning the prototypes, consider a labeled training dataset
D¼ fðxn; ynÞ;n¼ 1;2; . . . ;Ng, where ynAf1;2; . . . ; Lg is the class
label of the training pattern xn. The objective of learning is to
minimize the expected risk based on loss function f:

Rff ¼

Z
fðf ðxÞÞpðxÞdx; ð1Þ

where fðf ðxÞÞ is the loss that x is classified by the decision f(x),
and p(x) is the probability density at the sample point x. In
practice, the expected loss is replaced by the empirical loss on a
training set:

R̂ff ¼
1

N

XN

n ¼ 1

fðf ðxnÞÞ: ð2Þ

Generally, the loss function depends on the parameters of
prototypes Y¼ fmlsg, l¼ 1;2; . . . ; L, s¼ 1;2; . . . ; S. At the stationary
point, the loss function R̂f satisfies rYR̂f ¼ 0.

For minimizing the empirical loss, the prototypes are updated
on each training pattern by stochastic gradient descent [21]:

Yðtþ1Þ ¼YðtÞ�ZðtÞrfðf ðxÞÞjx ¼ xn
; ð3Þ

where ZðtÞ is the learning rate at the t-th iteration.
3. Prototype learning with misclassification loss

In the MCE and SNPC methods, fðf Þ approximates the
misclassification rate. When a pattern x from class l is classified,
the misclassification rate is 1�PðCljxÞ. The MCE method approx-
imates the posterior probability PðCljxÞ by the sigmoid function
while the SNPC estimates the posterior probability in the frame-
work of Gaussian mixture.

3.1. Minimum Classification Error (MCE) method

For a pattern xn from genuine class k (class label), its
discriminant function to a class l is given by

glðxnÞ ¼max
s
f�Jxn�mlsJ

2
g; ð4Þ

where J � J is the Euclidean metric. We denote the nearest
prototype from the genuine class as mki, i.e., gkðxnÞ ¼ �Jxn�mkiJ

2.
A reasonable definition of misclassification measure is given

by [16]

dkðxnÞ ¼ �gkðxnÞþgrðxnÞ; ð5Þ
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where grðxnÞ ¼maxlakglðxnÞ ¼�Jxn�mrjJ
2 is the discriminant

function of the closest rival class r. �dk(xn) can be viewed as
the margin of xn, which is connected to the hypothesis margin
[11].2

The misclassification loss of xn is approximated by the sigmoid
function sð�Þ:

fðxnÞ ¼ 1�PðCkjxnÞ ¼ 1�
1

1þexdkðxnÞ
¼

1

1þe�xdkðxnÞ
¼ sðxdkðxnÞÞ;

ð6Þ

where x (x40) is a constant for tuning the smoothness of
sigmoid. From (5) and (6), the loss on a training pattern xn only
depends on two nearest prototypes: mki from the genuine class
and mrj from one of incorrect classes.

It is easy to calculate the derivative of the loss with respective
to prototypes as

@fðxnÞ

@gki
¼�xfðxnÞð1�fðxnÞÞ;

@fðxnÞ

@grj
¼�

@fðxnÞ

@gki
: ð7Þ

In training by stochastic gradient descent, the prototypes are
updated on each training pattern xn at the t-th iteration by

mki ¼mki�2ZðtÞ @fðxnÞ

@gki
ðxn�mkiÞ;

mrj ¼mrj�2ZðtÞ @fðxnÞ

@grj
ðxn�mrjÞ: ð8Þ

The GLVQ (Generalized Learning Vector Quantization) algorithm
[4] takes the same loss function as the MCE method but a different
misclassification measure dk(xn) from the same two nearest
prototypes:

dkðxnÞ ¼
�gkðxnÞþgrðxnÞ

gkðxnÞþgrðxnÞ
: ð9Þ

It forces the quantity of update jDmkij greater than jDmrjj during
training. This was shown to lead to a perfect convergence of
training [4].
3.2. Soft Nearest Prototype Classifier (SNPC)

By the SNPC method, the input pattern xn is assigned posterior
probabilities to prototypes mls with the Gaussian mixture
assumption:

PlsðxnÞ ¼
expðxglsðxnÞÞPL

i ¼ 1

PS
j ¼ 1 expðxgijðxnÞÞ

; ð10Þ

where glsðxÞ ¼�Jx�mlsJ
2. The posterior probability of a class l is

PðCljxnÞ ¼
XS

s ¼ 1

PlsðxnÞ ¼ PlðxnÞ: ð11Þ

Then, the misclassification loss for a pattern xn from genuine class
k is

fðxnÞ ¼ 1�PkðxnÞ: ð12Þ

Since the loss function of SNPC involves all the prototypes, in
training by stochastic gradient descent, all the prototypes are
2 On the nearest genuine prototype mki and the nearest rival prototype mrj to

point x, the hypothesis margin is 1
2 ðJx�mrjJ�Jx�mkiJÞ.
updated on a training pattern:

mls ¼mls�2ZðtÞ @fðxnÞ

@gls
ðxn�mlsÞ;

l¼ 1;2; . . . ; L; s¼ 1;2; . . . ; S; ð13Þ

where

@fðxnÞ

@gls
¼
�xPlsðxnÞð1�PkðxnÞÞ; l¼ k;

xPlsðxnÞPkðxnÞ; lak:

(
ð14Þ

In training, the parameter x3 is initially set to a small value and then
increases after every iteration in spirit of deterministic annealing.

The idea of SNPC for prototype learning was proposed earlier
as MAXP (MAXimum class Probability) from a different view [7],
where the criterion of maximizing class probability was inspired
by neural network training [22].
4. Prototype learning with conditional log-likelihood loss

The Conditional Log-likelihood Loss (CLL) is widely used in
pattern classification methods such as logistic regression [21] and
Bayesian networks [23]. In general, the conditional likelihood
function for multi-class is given by

PðHjYÞ ¼
YN

n ¼ 1

YL

l ¼ 1

PðCljxnÞ
tnl ; ð15Þ

where H is an N � L matrix of target variables with elements
tnl ¼ I½xnACl� and I½�� is the indicator. Taking the negative
logarithm gives

E¼�
XN

n ¼ 1

XL

l ¼ 1

tnllnPðCljxnÞ; ð16Þ

which is known as conditional log-likelihood loss. The loss
associated with a pattern xn is

fðxnÞ ¼�
XL

l ¼ 1

tnllnPðCljxnÞ: ð17Þ

The Robust Soft Learning Vector Quantization (RSLVQ) [18],
similar to the MAXP (MAXimum class Probability) and the SNPC
(Soft Nearest Prototype Classifier) methods, models the class
density in the framework of Gaussian mixture and minimizes the
conditional log-likelihood loss. In RSLVQ, the derivative of the loss
(17) on a training pattern xn from genuine class k is given by

@fðxnÞ

@gls
¼
�xPlsðxnÞð1�PkðxnÞÞ=PkðxÞ; l¼ k;

xPlsðxnÞ; lak:

(
ð18Þ

Compared with the derivative of MAXP and SNPC in (14), we can
see that the derivative of loss for RSLVQ can be obtained by
dividing that of MAXP and SNPC by the posterior probability of
the genuine class. In the following, we will propose a discrimi-
native model-based prototype learning method, which minimizes
a margin-based loss, called LOG-likelihood of Margin (LOGM).

4.1. LOG-likelihood of Margin (LOGM)

For multi-class classification, we may view the genuine class of
xn as the positive class and the union of the remaining classes as a
negative class. Given that mki and mrj are the nearest prototype to
xn from the positive class (class k) and the one from the negative
class (class r), respectively, we can define the discriminant
3 In the Gaussian distribution, x is proportional to the precision parameter

which is the inverse of the covariance.
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function for a binary classification problem (positive class and
negative class):

f ðxnÞ ¼ gkðxnÞ�grðxnÞ ¼�dkðxnÞ; ð19Þ

where gl(xn) (l=k,r) and dk(xn) are as in (4) and (5). If f ðxnÞo0, xn

is misclassified. f(xn) is similar to the hypothesis margin of pattern
xn, which is defined as 1

2 ðJx�mrjJ�Jx�mkiJÞ.
Like the MCE (Minimum Classification Error) method, the

posterior probability of genuine class can be approximated by the
sigmoid function:

PðCkjxnÞ ¼ sðxf ðxnÞÞ ¼
1

1þexdkðxnÞ
; ð20Þ

and the conditional log-likelihood loss is fðxnÞ ¼ �logPðCkjxnÞ. The
derivative of the loss (17) is then given by

@fðxnÞ

@gki
¼�ð1�PðCkjxnÞÞx;

@fðxnÞ

@grj
¼�

@fðxnÞ

@gki
: ð21Þ

On the training pattern xn from genuine class k, only two
prototypes, mki and mrj, are updated by gradient descent (8).
Comparing the derivatives of (21) for LOGM with those of (7) for
MCE, it is seen that the derivatives of LOGM can be obtained via
dividing those of MCE by PðCkjxnÞ.
4 The superscript p in the formula represent the p-th dimension of the vector.
4.2. Regularization of prototype learning algorithms

The minimization of misclassification loss may lead to unstable
solutions. For example, when the samples of two classes are
linearly separable, a classifier with one prototype per class can
classify them perfectly. To minimize the loss function, however,
the prototypes will be drawn away from the decision surface as far
as possible for enlarging the margin. Unlike that the maximization
of sample margin (for support vector machines, e.g.) is beneficial
to generalization performance, the enlarging of the margin of MCE
as in (19) may deteriorate the generalization performance.

To constrain the margin of the MCE (Minimum Classification
Error) and the LOGM (LOG-likelihood of Margin) algorithms, we add
a regularization term to the loss function in a similar way to [24]

~fðxnÞ ¼fðxnÞþaJxn�mkiJ
2; ð22Þ

where a is the regularization coefficient. Intuitively, the regularizer
makes the winning prototype move toward pattern xn. The
prototypes are now updated by

mki ¼mki�2ZðtÞ @fðxnÞ

@gki
�a

� �
ðxn�mkiÞ;

mrj ¼mrj�2ZðtÞ @fðxnÞ

@grj
ðxn�mrjÞ: ð23Þ

Obviously, the regularization term in (22) effects in reducing the
distance to prototype Jxn�mkiJ. While the margin of MCE as in (19)
equals

Jx�mrjJ
2
�Jx�mkiJ

2
¼ ðJx�mrjJþJx�mkiJÞðJx�mrjJ�Jx�mkiJÞ;

ð24Þ

when the margin of MCE is constrained, the reducing of distance to
prototype helps enlarge the hypothesis margin (corresponding to
the second term above).

For fair comparison, we also add a regularization term in the
SNPC (Soft Nearest Prototype Classifier) and the RSLVQ (Robust
Soft Learning Vector Quantization) algorithms:

~fðxnÞ ¼fðxnÞ�alog
X

j

expðxgkjÞ

0
@

1
A; ð25Þ

where the second term is the negative log-likelihood of the class-
conditional density about the positive class and it makes all
prototypes in the positive class move toward xn. The prototypes
are then updated by

mls ¼mls�2ZðtÞfðxnÞ

gls
ðxn�mlsÞþ2ZðtÞaxPlsðxnÞ

PkðxnÞ
ðxn�mlsÞ; l¼ k;

mls ¼mls�2ZðtÞfðxnÞ

gls
ðxn�mlsÞ; lak; ð26Þ

where s¼ 1;2; . . . ; S. Obviously, the increment toward the proto-
type mls is proportional to the posterior probability Pls(xn).

4.3. LOGM with weighted distance metric

The performance of prototype classifier depends on the
distance metric. The commonly used Euclidean metric, without
considering the relevance of features, may not give sufficient
classification performance. To justify the potential of improved
performance of prototype learning with weighted distance metric,
we extend the LOGM algorithm to prototype learning with both
prototype-dependent weighting and prototype-independent
weighting. Distance metric learning with prototype-independent
feature weights has been applied with the GRLVQ [13]. We will
show that using prototype-dependent weights, i.e., a weight
vector for each prototype, can achieve a substantial improvement
of classification performance.

In the case of prototype-dependent weighting, the square
distance from a pattern x to a prototype mls is defined as4

rðx;mls; klsÞ ¼
Xd

p ¼ 1

lp
lsðx

p�mp
lsÞ

2; ð27Þ

where kls; l¼ 1;2; . . . ; L; s¼ 1;2; . . . ; S, is the weight vector at-
tached to the prototype mls. Replacing Jx�mlsJ

2 in LOGM with
rðx;mls; klsÞ, the updating of the prototypes and weights in
stochastic gradient descent can be formulated as (p¼ 1; . . . ;d)

mp
ki ¼mp

ki�2ZðtÞ @fðxnÞ

@gki
�a

� �
lp

kiðx
p
n�mp

kiÞ;

mp
rj ¼mp

rj�2ZðtÞ @fðxnÞ

@grj
lp

rjðx
p
n�mp

rjÞ; ð28Þ

lp
ki ¼ lp

kiþrðtÞ
@fðxnÞ

@gki
�a

� �
ðxp

n�mp
kiÞ

2;

lp
rj ¼ lp

rj�rðtÞ
@fðxnÞ

@gki
ðxp

n�mp
rjÞ

2: ð29Þ

On another hand, the square distance metric with prototype-
independent weights is defined as

rðx;mls; kÞ ¼
Xd

p ¼ 1

lp
ðxp�mp

lsÞ
2: ð30Þ
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Table 2
Relationships between prototype learning algorithms.

Generative Discriminative

Misclassification Rate SNPC (MAXP) MCE

Negative Log-Likelihood RSLVQ LOGM

X.-B. Jin et al. / Pattern Recognition 43 (2010) 2428–24382432
Similarly, the updating of parameters in stochastic gradient
descent can be induced as

mp
ki ¼mp

ki�2ZðtÞ @fðxnÞ

@gki
�a

� �
lp
ðxp

n�mp
kiÞ;

mp
rj ¼mp

rj�2ZðtÞ @fðxnÞ

@grj
lp
ðxp

n�mp
rjÞ; ð31Þ

lp
¼ lp
þrðtÞ @fðxnÞ

@gki
�a

� �
ðxp

n�mp
kiÞ

2
�
@fðxnÞ

@gki
ðxp

n�mp
rjÞ

2

� �
: ð32Þ

In the weight vector kls or k, all the components are initially set to
1/d. After each update in stochastic gradient descent, if a
component of the weight vector is negative, it is re-set to zero.
The weight vector is renormalized to JkJ1 ¼ 1 after each update. The
learning rate rðtÞ for the weights is empirically set to 0:1ZðtÞ [13].
Fig. 1. Loss functions of MCE and LOGM based on hypothesis margin f(x).
5. Discussions

In this section, we discuss the relationships between the
proposed LOGM algorithm and their predecessors, and discuss their
convergence, generalization ability and computational complexity.

5.1. Generative versus discriminative

The proposed prototype learning algorithm LOGM is closely
related to the previous ones SNPC (equivalent to MAXP), MCE and
RSLVQ. The LOGM and RSLVQ algorithms are based on minimiza-
tion of the Conditional Log-likelihood Loss (CLL), while the MCE and
the SNPC (MAXP) are based on direct minimization of the smoothed
misclassification rate. From (18) and (21), the CLL results in a
multiplier 1=PðCkjxnÞ (Ck is the genuine class of xn) in gradient
learning. This indicates that on training patterns that are more
likely to be misclassified, the prototypes are updated with a larger
move. On the other hand, the SNPC (MAXP) and RSLVQ algorithms
compute the posterior probabilities of prototypes and classes in the
framework of Gaussian mixture, while the MCE and LOGM
algorithms compute the probability of correct classification based
on the margin via reducing the multi-class problem into a binary
one on each training pattern. The formulation of prototypes in a
Gaussian mixture can be viewed as a generative model, and the
margin-based formulation can be viewed as a discriminative model.

The generative model can be converted to a discriminative one
under certain conditions. In the probability formula of the
generative model (10), if we separate the terms about the positive
class (genuine class k) from the ones about the negative class, the
posterior probability can be re-written as

PðCkjxnÞ ¼

PS
s ¼ 1 expðxgksÞPS

s ¼ 1 expðxgksÞþ
P

lak

PS
s ¼ 1 expðxglsÞ

¼
1

1þexpð�aÞ
;

ð33Þ

where a¼ log
PS

s ¼ 1 expðxgksÞ=
P

lak

PS
s ¼ 1 expðxglsÞ. If gkibgki0

and grjbgr0j0 where gki0 and gr0 j0 are the second largest in
fgks; s¼ 1;2; . . . ; Sg and in fgls; lak; s¼ 1;2; . . . ; Sg, respectively,
then a� xðgki�grjÞ, which converts the generative model (10) to
the discriminative one (20). This case happens for many training
patterns when the prototypes distribute sparsely in the input
space. One may note that the discriminative model focuses on the
local and confusing regions because the misclassification loss only
depends on gki and grj, which come from the genuine class and the
most confusing rival class, respectively, while the generative
model considers the entire space by involving all prototypes in
the loss function.

The relationships between the prototype learning algorithms
can be summarized in Table 2.
5.2. Convergence of prototype learning algorithms

Previous efforts [25,26] have been made to prove the
convergence of LVQ, which can be viewed as an online
(stochastic) gradient learning, or stochastic approximation pro-
blem [27,28]. The stochastic approximation algorithm is to solve
the root of a conditional expectation about a pair of random
variables. The derivative of the objective of expected risk in Eq. (1)
is written as

@Rff

@Y
¼

Z
fðf ðxÞÞ
@Y

pðxÞdx¼ E
fðf ðxÞÞ
@Y

� �
: ð34Þ

The goal of prototype learning algorithms is to find Y at which
@Rff=@Y¼ 0, where the stochastic approximation converges to a
local minimum of Rff (more details in [28]). If the objective
function is continuous with respect to the parameters to learn, a
sequence of learning rate starting with a small value and
vanishing gradually leads to convergence generally.

The loss functions of SNPC (MAXP) and RSLVQ involve all the
prototype vectors and are apparently continuous with them. The
loss functions of MCE, GLVQ and LOGM involve only two selected
prototypes, which are dynamic depending on the training pattern.
However, if we view the gl(xn) in Eq. (4) as the extreme case of a
soft-max of multiple prototype measures (as derived in [16]), the
loss function involving two soft-max distances is actually
continuous with respect to all the prototype vectors. Hence, the
convergence of these prototype learning algorithms are guaran-
teed by stochastic approximation.
5.3. Generalization of prototype learning algorithms

Section 5.1 has shown that the generative model can be
converted to a discriminative one under certain conditions.
Hence, our discussion of generalization performance focuses on
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Fig. 2. Left: the loss of MCE as the function of (gk(x),gr(x)); right: the loss of LOGM as the function of (gk(x),gr(x)).

Fig. 3. Average margins of different algorithms during training on the USPS

dataset (S=20 and a¼ 0:001).
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the prototype learning algorithms based on the discriminative
model (margin-based algorithms).

Margin-based learning algorithms aim to minimize different
loss functions based on certain margin. The prototype learning
algorithms MCE (Minimum Classification Error) and LOGM (LOG-
likelihood of Margin) minimize the loss 2=ð1þexpð2f ðxÞÞÞ and
lnð1þexpð�f ðxÞÞÞ=ln2,5 respectively. The loss functions are plotted
in Fig. 1, where f(x) = gk(x) � gr(x). Fig. 2 shows the loss of MCE
and LOGM as the functions of gk(x) and gr(x). We can see that the
loss of LOGM is convex with respect to the margin f(x) and the
variables (gk(x),gr(x)).6 The property of classification-calibration
[19] about two losses guarantees that the minimization of Rfðf Þ

may provide a reasonable surrogate for the minimization of 0–1
loss. A convex loss function is preferred because of its unique
optima and guaranteed global convergence.

Crammer et al. [11] presented a generalization bound of LVQ
based the hypothesis margin, which indicates that large hypoth-
esis margins lead to small generalization error bounds. Our
proposed prototype learning algorithms are hypothesis margin
maximization ones. The margin-based learning algorithm LOGM
minimizes the empirical error based on the margin Jx�mrjJ

2
�

Jx�mkiJ
2. By constraining the distance to prototypes in regular-

ization (Eq. (22)), the hypothesis margin 1
2 ðJx�mrjJ�Jx�mkiJÞ is

effectively maximized.
For an example, Fig. 3 shows the average hypothesis margins

of five algorithms, LOGM, MCE, GLVQ (Generalized Learning
Vector Quantization), RSLVQ (Robust Soft Learning Vector
Quantization) and MAXP (MAXimum class Probability) on the
USPS dataset during learning. We can see that before 600 rounds
(each pattern is used once for updating in a round), LOGM can
obtain larger average hypothesis margin than MCE and GLVQ, and
the discriminative model-based algorithms generate larger
hypothesis margins than the ones based on generative model.
5.4. Comparison of time complexity

Obviously, the MCE, GLVQ and LOGM algorithms have the
same training time complexity O(NTLSd + NTd) (T is the number of
iterations and d is the dimension of input space), where the first
term is the time complexity of computing gr (gk) and the second
term is of two update operations. The SNPC (MAXP) and RSLVQ
5 Two loss functions are scaled to pass through the point (0,1).
6 For LOGM it can be proven that @2fðf Þ=@z @zT

Z0, where z = (gk(x), gr(x))T.
algorithms have the same time complexity O(NTLSd + NTLSd)
overall, where the first term is the time of calculating gls for all
prototypes and the second term (for updating all prototypes)
shows that they need more update time than MCE, GLVQ and
LOGM. We have a close look at SNPC (soft nearest prototype
classifier) and RSLVQ (Robust Soft Learning Vector Quantization)
for one iteration. In updating the prototypes of the positive class,
the RSLVQ needs more S division operations than the SNPC, but in
updating the prototypes of the negative class, the RSLVQ needs
less (L�1)S multiplication operations than the SNPC. In sum, The
SNPC needs more TS(L�2) (LZ2) basic operations than the RSLVQ
during training. In classification stage, all the prototype learning
algorithms have the same time complexity O(LSd) for a new
pattern.

The training and test times of different algorithms on the USPS
dataset in Table 3 supports the above discussions about time
complexity.

In Table 3, MAXP1 is a modified version of MAXP (equivalent to
SNPC) [7], which updates the S+1 nearest prototypes (at least one
of them comes from the negative class) instead of all prototypes
on a training pattern. We similarly modify the RSLVQ algorithm to
update S+1 nearest prototypes on a training pattern, and obtain
the algorithm RSLVQ1. Given that mlisi

; i¼ 1;2; . . . ; Sþ1, are the
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Table 4
Description of the datasets used in experiments.

No. Dataset #feature #class #training #test

1 Breast 10 2 683 cv-10

2 Corral 6 2 128 cv-10

3 Dermatology 34 6 358 cv-10

4 Diabetes 8 2 768 cv-10

5 Flare 10 2 1066 cv-10

6 Glass 9 7 214 cv-10

7 Glass2 9 2 163 cv-10

8 Heart 13 2 270 cv-10

9 Hepatitis 19 2 80 cv-10

10 Ionosphere 34 2 351 cv-10

11 Iris 4 3 150 cv-10

12 Liver 6 2 345 cv-10

13 Mass 5 2 830 cv-10

14 Pima 8 2 768 cv-10

14 Segment 19 7 2310 cv-10

16 Sonar 60 2 208 cv-10

17 Soybean-large 35 19 562 cv-10

18 Vehicle 18 4 846 cv-10

19 Vote 16 2 435 cv-10

20 Waveform-21 21 3 5000 cv-10

21 Wine 13 3 178 cv-10

22 Wdbc 30 2 569 cv-10

23 20NG 1000 20 11,314 7532

24 Chess 36 2 2130 1066

25 Letter 16 26 15,000 5000

26 Optdigit 64 10 3823 1797

27 Pendigit 16 10 7494 3498

28 Satimage 36 6 4435 2000

29 Thyroid 21 3 3772 3428

30 USPS 256 10 7291 2007

Table 3
Training and test times (seconds) on USPS dataset.

Time MCE* MCE GLVQ SNPC MAXP1 LOGM RSLVQ RSLVQ1

Train 3.22 39.55 39.92 235.17 52.95 39.88 60.53 53.73

Test 0.26 0.44 0.45 0.47 0.44 0.47 0.44 0.44

a¼ 0, S = 20 were set for all prototype learning algorithms except for MCE* (S = 1).
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selected nearest prototypes to training pattern xn, the posterior
probability for the genuine class k is computed by

~PkðxnÞ ¼
X
li ¼ k

~Plisi
ðxnÞ; ð35Þ

where

~Plisi
ðxnÞ ¼

expðxglisi
ðxnÞÞPSþ1

j ¼ 1 expðxgljsj
ðxnÞÞ

: ð36Þ

The MAXP1 and RSLVQ1 algorithms are obtained by replacing Pk(xn)
with ~PkðxnÞ and Pls(xn) with ~Plisi

ðxnÞ in (14), (18) and (26), on the S+1
selected prototypes. Table 3 shows that the MAXP1 and RSLVQ1
algorithms need less training time than MAXP (SNPC) and RSLVQ.

6. Experiments

In our experiments, we have compared the performance of the
proposed LOGM algorithm with previous representative algorithms
(MCE, GLVQ, SNPC, MAXP1, RSLVQ and its variant RSLVQ1) as well
as the state-of-the-art classifier support vector machine (SVM) [29].
We use the one-versus-all SVM classifier with Gaussian (RBF) kernel,
with parameters trained using the SVM-light package [30]. We also
evaluate the effects of the LOGM with prototype-dependent
weighting and prototype-independent weighting.

6.1. Description of datasets

We evaluated the classification performance on 30 datasets, 28
of which are from the UCI Machine Learning Repository [31]. For
22 small-scale datasets, we evaluate the performance by 10-fold
cross validation (cv-10), while eight large datasets are partitioned
into unique training and test subsets. Some datasets contain
discrete values of attributes, which are converted into continuous
ones by mapping k discrete values to f0;1; . . . ; k�1g one-by-one.
The patterns with missing values were removed from the datasets
since our algorithms do not handle missing values. The datasets
are summarized in Table 4.

The datasets USPS and 20NG (20Newgroups) are from the
public sources other than the UCI. The USPS dataset contains
normalized handwritten digit images of 16�16 pixels, with pixel
level between 0 and 255. It was commonly partitioned into 7291
training samples and 2007 test samples. The 20NG dataset is a
collection of approximately 20,000 documents that were collected
from 20 different newsgroups [32]. For convenience of compar-
ison, the bydate version of this dataset along with its train/test
split was used in our experiments. The text documents were
preprocessed by removing tags and stopwords7 and by word
stemming8 [33]. Then, the documents were transformed into a
representation suitable for classification by TFIDF weighting [34].
The information gain method [35] was used to select 1000
features of highest scores.
7 Stopwords are the frequent words that carry no information (i.e. pronouns,

prepositions, conjunctions, etc.).
8 Word stemming is a process of suffix removal to generate word stems.
The datasets Chess, Satimage and Letter were splitted into
training and test subsets following [36]. The Optdigit, Pendigit
and Thyroid were given the training and test subsets designated
by the UCI.

At last, all the datasets except 20NG were normalized by
linearly scaling each attribute to [�1,1].
6.2. Setup of experiments

In implementing the prototype learning algorithms, the
prototypes were initialized by k-means clustering of classwise
data. For all the algorithms, the initial learning rate Zð0Þwas set to
0:1t � cov, where t was drawn from {0.1,0.5,1,1.5,2} and cov is the
average square Euclidean distance of all training patterns to the
nearest cluster center. In the t-th round of iteration, the learning
rate of the n-th pattern was Zð0Þð1�ðtNþnÞ=TNÞ, where T is the
maximum number of rounds. For the 22 small datasets, T was
set to 100 and the prototype number S was selected from {1, 2, 3,
4, 5}. For the eight large datasets, T was set to 40 and S was
selected from {5, 10, 15, 20, 25} following [10]. The regularization
coefficient a was selected from {0,0.001,0.005,0.01,0.05}. The
training parameters and model parameters were optimized in the
space of the cubic grid ða; S; tÞ by cross-validation on the training
data.

The smoothing parameter x was initialized as 2/cov, and was
fixed during training for all the prototype learning algorithms
except the SNPC. For SNPC, x was increased by ratio 1.00001 after
each training pattern in spirit of deterministic annealing. It was
observed in our experiments that if x is initialized properly,
whether to evolve x in training or not does not influence the
performance.

For the SVM classifier with RBF kernel, we only considered
the tradeoff parameter C and the kernel width g as done in
[37], where log2 C and log2g were selected from {10, 8, 6, 4, 2} and
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Table 5
Classification accuracies (%) of prototype classifiers and SVM.

No. Dataset MCE GLVQ SNPC MAXP1 LOGM RSLVQ RSLVQ1 SVM

1 Breast 94.63 94.24 94.64 94.76 94.31 94.13 94.14 94.27

2 Corral 99.77 99.69 99.69 99.85 100.0 99.85 99.77 100.0n

3 Dermatology 95.16 95.55 95.57 95.33 95.22 94.40 93.86 96.33n

4 Diabetes 76.13 75.37 75.60 75.93 76.81 76.50 75.77 76.68

5 Flare 86.97 86.72 87.05 86.90 87.08 86.97 87.22 87.04

6 Glass 68.06 66.45 68.29 68.33 67.56 68.51 66.56 68.43

7 Glass2 73.77 72.26 72.64 72.84 74.41 76.07 75.19 75.84

8 Heart 82.37 83.04 83.22 83.41 81.18 81.70 81.44 83.04

9 Hepatitis 87.25 86.88 86.75 86.38 87.50 88.00 88.00 84.50

10 Ionosphere 87.75 89.12 87.47 87.52 88.38 89.03 89.17 94.53n

11 Iris 95.60 95.53 95.73 95.73 96.20 96.00 96.00 95.53

12 Liver 69.92 66.76 69.43 69.50 69.46 70.07 68.68 71.69n

13 Mass 81.86 81.08 80.23 80.05 81.23 81.78 81.22 82.09n

14 Pima 75.94 75.75 75.75 75.94 76.39 75.63 75.38 76.56n

15 Segment 95.67 95.48 95.50 95.29 95.94 95.94 94.91 96.90n

16 Sonar 86.74 84.69 85.77 85.91 86.81 86.19 85.51 87.76n

17 Soybean-large 89.27 89.41 89.86 90.09 89.90 88.84 87.24 89.75

18 Vehicle 80.38 78.25 77.02 76.95 81.95 81.26 75.88 85.61n

19 Vote 94.89 94.53 94.85 95.04 95.26 95.17 95.16 94.88

20 Waveform-21 86.84 86.20 83.64 84.64 86.84 86.96 86.87 86.97n

21 Wine 97.22 96.44 97.83 97.56 97.27 97.45 97.34 98.01n

22 Wdbc 97.35 97.21 97.44 97.38 97.22 97.31 97.26 97.34

23 20NG 74.24 74.19 73.80 73.81 74.84 73.70 74.22 76.55n

24 Chess 97.75 96.44 98.31 98.22 98.41 98.69 99.44 99.16

25 Letter 95.66 95.06 95.74 96.02 95.92 96.16 95.76 97.04n

26 Optdigit 98.27 98.00 98.05 98.27 98.33 97.77 97.89 98.72n

27 Pendigit 97.86 97.57 98.03 98.06 97.00 97.51 97.43 98.31n

28 Satimage 72.15 70.75 72.80 73.15 72.80 71.20 71.60 74.85n

29 Thyroid 93.82 93.79 93.90 93.82 93.82 93.90 94.11 96.56n

30 USPS 94.62 93.77 94.37 94.77 94.32 94.17 94.82 95.42n

Average rank 3.82 5.63 4.15 3.63 3.05 3.47 4.25

The highest accuracy of each dataset given by prototype classifiers is highlighted in boldface. The accuracy of SVM is marked asterisk if it is higher than the prototype

classifiers. The last row gives the average rank of prototype classifiers.
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{�1, �3, �5, �7, �9}, respectively. All the experiments ran on
the platform of Torch [38], a C++ library.

For the 22 small datasets, the accuracy of an algorithm on a
dataset was obtained via 10 runs of 10-fold cross validation. The
detailed procedure is below:
(1)
 For each run, the dataset was randomly divided into 10
disjoint subsets of approximately same size by stratified
sampling. We kept the same divisions for all learning
algorithms.
(2)
 Each of 10 subsets was used as test set and the remaining data
was used for training. The 10 subsets were used for testing
rotationally for evaluating the classification accuracy.
(3)
 During each training process, the training parameters were
determined as follows: first, we held out 1

3 of the training data
by stratified sampling for validation while the classifier
parameters were estimated on the remaining 2

3 of data (the
split of training data is the same for all learning algorithms).
After selecting training parameters that gave the highest
validation accuracy, all the training data were used to re-train
the classifier for evaluation on test data.
9 The top rank (highest accuracy) on a dataset is scored 1, second rank scored

2, and so on.
For the eight large datasets, we only held out 1
5 of the training data

for validation to select training parameters. For evaluation on test
data, the classifier was then re-trained on the whole training set
with the selected training parameters.

6.3. Results and discussions

The classification accuracies of seven prototype learning
algorithms (MCE, GLVQ, SNPC, MAXP1, LOGM, RSLVQ and
RSLVQ1) and the SVM classifier with RBF kernel on the 30
datasets are listed in Table 5. On each dataset, the highest
accuracy of prototype classifiers is highlighted in boldface. The
average ranks9 of prototype learning algorithms on 30 datasets
are given in the bottom row. The SVM is used as a reference to
demonstrate the relative performance of the prototype learning
algorithms.

Since the advantage of a learning algorithm is variable
depending on datasets, we can only compare the algorithms in
statistical sense. In Table 5, we can see that among seven
prototype learning algorithms, the LOGM (LOG-likelihood of
Margin) gives the highest accuracy on 10 of 30 datasets, followed
by the RSLVQ (robust soft learning vector quantization)
top ranked on 7 datasets, RSLVQ1 on 6 datasets, and then MAXP1
(the variant of MAXP or SNPC) on 5 datasets. Comparing
the average ranks, the margin-based algorithm LOGM has the
highest average rank (3.05), followed by the RSLVQ (3.47), MAXP1
(3.63) and MCE (3.82). The performance of RSLVQ1 turns out to
be less stable than MAXP1 and MCE (Minimum Classification
Error).

Comparing prototype classifiers with SVM, the SVM gives
the highest accuracy on 18 of 30 datasets. Though the SVM
outperforms prototype classifiers on majority of datasets, it
has far higher complexity of training and classification on all
the datasets. For example, on the USPS dataset, the SVM training
by SVM-light costs 124 s, and the classification of test samples
costs 22 s due to the large number of support vectors (597 support
vectors per class on average). In comparison, learning 20
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Table 8
Comparison of accuracies of prototype learning with weighted distance metric on

22 small datasets.

Dataset k-means LOGM-W LOGM-P* LOGM-PIW LOGM-PDW SVM*

Breast 94.12 94.03 94.31 94.40 94.36 94.27

Corral 98.37 99.86 100.00 100.00 100.00 100.00

Dermatology 92.95 93.46 95.22 95.72 95.83 96.33
Diabetes 70.25 70.61 76.81 76.73 76.60 76.68

Flare 78.81 81.67 87.08 87.45 87.23 87.04

Glass 62.30 62.39 67.56 67.56 69.36 68.43

Glass2 72.12 72.19 74.41 74.61 74.54 75.84

Heart 79.92 80.00 81.18 80.85 80.48 83.04
Hepatitis 86.75 87.00 87.50 87.75 87.63 84.50

Ionosphere 87.35 88.52 88.38 88.78 89.31 94.53

Iris 96.13 96.13 96.20 96.20 96.67 95.53

Liver 59.51 59.46 69.46 69.46 71.55 71.69
Mass 78.51 78.50 81.23 81.41 81.99 82.09

Pima 71.33 71.91 76.39 76.46 76.17 76.56
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prototypes per class (200 prototypes in total) by the LOGM
algorithm costs only 39.88 s, and the classification time is 0.468 s.

The selected values of training parameters ða; S; tÞ in validation
give some cues to the characteristics of learning algorithms. The
selected parameters on two datasets are shown in Table 6.
The positivity of a (regularization coefficient) justifies that
the regularization in prototype learning does benefit the
generalization performance.

The statistical tests for comparisons of pairs of learning
algorithms on multiple datasets are given. The signed ranks test
[39] is claimed to be more sensible and safer than the paired
t-test. It ranks the differences of performance between two
classifiers on each dataset, ignores the signs, and compares the
ranks for the positive and the negative differences.

Let di be the difference of performance scores of two classifiers
on the i-th outcome of K datasets. The differences except H items
with di = 0 are ranked according to their absolute values, and in
case of ties, average ranks are assigned. Let R+ be the sum of ranks
for the datasets on which the second algorithm outperforms the
first and R� the sum of ranks for the opposite. The statistics z0 is
constructed below:

z0 ¼
minðRþ ;R�Þ�1

4NðNþ1Þ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
24NðNþ1Þð2Nþ1Þ

q ; ð37Þ

where N = K � H. Then, the p-value is computed by p¼ Pðjzj4z0Þ,
where the random variable z observes standard normal distribu-
tion. The p-value shows the significance probability of no
difference between two algorithms. If p-value is nearly zero, the
hypothesis that two algorithms perform equally is denied. A value
po0:05 indicates that two algorithms differ significantly with
over probability 0.95. We judge whether the second algorithm
outperforms the first according to the sign of R+

� R� .
The results of the signed ranks tests are shown in Table 7. It is

seen that the LOGM algorithm is significantly superior to the SNPC
(p = 0.0410) and GLVQ (p = 0.0004), and also outperforms the
MCE, MAXP1, and RSLVQ1. The RSLVQ is slightly inferior to the
LOGM (p=0.6420), but is significantly superior to the GLVQ and
Table 6
Selected parameters ða; S; tÞ of prototype learning algorithms on USPS and 20NG.

MCE GLVQ SNPC MAXP1 LOGM RSLVQ RSLVQ1

USPS

a 0.005 0.001 0.001 0.01 0.005 0.01 0.001

S 20 5 25 15 10 15 20

t 1.5 1.5 2 2 1.5 2 1.5

20NG

a 0.01 0.005 0.01 0.001 0.001 0.001 0.001

S 5 5 20 5 5 15 15

t 0.5 0.1 0.5 1 0.5 2 1.5

Table 7
Signed ranks two-tailed tests (p-values) for comparing pairs of algorithms on 30 datas

Second\first MCE GLVQ SNPC

GLVQ �0.0005
SNPC �0.3135 +0.0305
MAXP1 �0.5971 +0.0417 +0.1195

LOGM +0.1084 +0.0004 +0.0410
RSLVQ +0.7703 +0.0055 +0.2098

RSLVQ1 �0.1274 +0.0878 �0.5999

SVM +0.0001 +0.0000 +0.0003

The entries with po0:05 are highlighted in boldface. The sign of R+
� R� between

outperforms the first one.
RSLVQ1, and slightly superior to the other prototype learning
algorithms. The SVM is significantly superior to all the prototype
learning algorithms at the cost of higher complexity. In contrast to
the average ranks of prototype learning algorithms in Table 5, the
MAXP1 algorithm is shown to be statistically inferior to the MCE
(p=0.5971) though it has a higher average rank than the MCE, but
the difference is not significant.

Finally, we evaluate the effects of prototype learning and
distance metric learning under the LOGM criterion. We combine
prototype learning and weight learning, then obtain five instances
of implementation: (1) prototype initialization by k-means
clustering of classwise data, without prototype learning and
weight learning; (2) weight learning only by LOGM (LOGM-W,
updating weights only in gradient descent); (3) prototype
learning only by LOGM (LOGM-P, i.e., LOGM in the former text);
(4) prototype learning with prototype-independent weighting
(LOGM-PIW); (5) prototype learning with prototype-dependent
weighting (LOGM-PDW). Table 8 gives the results of these
algorithms on 22 small datasets.

The results in Table 8 show that when learning prototypes or
weights only, prototype learning is more effective to improve the
classification performance than distance metric learning (LOGM-P
ets.

MAXP1 LOGM RSLVQ RSLVQ1

+0.1048

+0.3524 �0.6420

�0.4106 �0.0703 �0.0372
+0.0005 +0.0006 +0.0004 +0.0002

two algorithms is denoted by + or � . A + indicates that the second algorithm

Segment 93.92 94.26 95.94 96.17 96.86 96.90

Sonar 82.58 82.72 86.81 86.81 88.16 87.76

Soybean-large 88.64 89.12 89.90 90.15 90.26 89.75

Vehicle 70.44 71.35 81.95 82.19 83.98 85.61

Vote 94.24 95.14 95.26 95.69 95.67 94.88

Waveform-21 81.07 81.30 86.84 87.10 87.34 86.97

Wine 96.48 96.53 97.27 97.33 97.49 98.01

Wdbc 95.64 95.70 97.22 97.24 97.21 97.34

Average rank 5.75 4.98 3.30 2.39 2.20 2.38

(1) k-means (no prototype and weight learning); (2) LOGM for weight learning

(LOGM-W); (3) LOGM for prototype learning (LOGM-P); (4) LOGM for prototype

learning and prototype-independent weighting (LOGM-PIW); (5) LOGM for proto-

type learning and prototype-dependent weighting (LOGM-PDW). The results in the

columns with asterisk (LOGM-P and SVM) are consistent with those in Table 5.
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significantly outperforms LOGM-W). The performance of LOGM-P
is further improved by combining prototype learning and
distance metric learning, while prototype-dependent weighting
(LOGM-PDW) yields even higher performance than prototype-
independent weighting (LOGM-PIW). According to the results on
22 datasets, the LOGM-PDW even has higher average rank (2.20)
than the SVM classifier (2.38). This is because the SVM classifier
has very low ranks on a few datasets (e.g., rank 4 on Breast and
rank 6 on Hepatitis).When comparing LOGM-PDW and SVM
directly, the SVM outperforms the LOGM-PDW on 12 datasets, the
LOG-PDW outperforms on nine datasets, and there is a tie on one
dataset.
7. Concluding remarks

In this paper, we have proposed a discriminative prototype
learning algorithm based on the Conditional Log-likelihood Loss
(CLL), called LOG-likelihood of Margin (LOGM). A regularization
term is added to avoid over-fitting in training. The joint effect of
convex margin-based loss minimization and regularization pro-
duces large hypothesis margins, which lead to low generalization
error bounds. In experiments on 30 datasets, the LOGM algorithm
is demonstrated to outperform the previous representative
algorithms MCE, GLVQ, SNPC (MAXP), and RSLVQ. We observed
in experiments that the LOGM produces larger average hypothesis
margin than the other prototype learning algorithms.

Though this paper focuses on the effects of loss functions on
prototype learning algorithms, we have extended the LOGM
algorithm to prototype learning with weighted distance metric.
Experimental results show that the LOGM with prototype-depen-
dent weighting achieves comparable performance to the state-of-
the-art SVM classifier, yet the training time complexity and the test
time complexity of SVM is much higher than the prototype
classifier. This offers applicability to large scale classification
problems such as character recognition [7] and text classification
[8]. The LOGM as a learning criterion can also be applied to other
classifier structures based on gradient descent, such as neural
networks [16] and quadratic discriminant functions [24].
Acknowledgments

This work is supported in part by the Hundred Talents Program
of Chinese Academy of Sciences (CAS) and the National Natural
Science Foundation of China (NSFC) under Grant nos. 60775004
and 60825301.

References

[1] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed., Wiley
Interscience, New York, 2001.

[2] C.-L. Chang, Finding prototypes for nearest neighbor classifiers, IEEE Trans.
Comput. 23 (11) (1974) 1179–1184.

[3] T. Kohonen, Improved versions of learning vector quantization, Neural
Networks 1 (17–21) (1990) 545–550.

[4] A. Sato, K. Yamada, Generalized learning vector quantization, in: Advances in
Neural Information Processing Systems, 1995, pp. 423–429.

[5] J. Bezdek, T. Reichherzer, G. Lim, Y. Attikiouzel, Multiple-prototype classifier
design, IEEE Trans. System Man Cybernet. Part C 28 (1) (1998) 67–79.

[6] L. Kuncheva, J. Bezdek, Nearest prototype classification: clustering, genetic
algorithms, or random search?, IEEE Trans System Man Cybernet. Part C 28
(1) (1998) 160–164.
[7] C.-L. Liu, M. Nakagawa, Evaluation of prototype learning algorithms for
nearest-neighbor classifier in application to handwritten character recogni-
tion, Pattern Recognition 34 (3) (2001) 601–615.

[8] M.T. Martı́n-Valdivia, M.G. Vega, L.A.U. López, LVQ for text categorization using a
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