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The relation learning between two entities is an essential task in knowledge graph completion that receives much attention recently.
Previous work most exclusively focused on relations widely seen in the original knowledge graphs (KGs), which means enough
training data are available for modeling. However, long-tail relations that only show in a few triples are actually much more common
in practical KGs. Without sufficiently large training data, the performance of existing models on predicting long-tail relations drops
impressively. This work aims to predict the relation under a challenging setting where only one instance is available for training. We
propose a path-based one-shot relation prediction framework, which can extract neighborhood information of an entity based on the
relation query attention mechanism to learn transferable knowledge among the same relation. Simultaneously, to reduce the impact of
long-tail entities on relation prediction, we selectively fuse path information between entity pairs as auxiliary information of relation
features. Experiments in three one-shot relation learning datasets show that our proposed framework substantially outperforms
existing models on one-shot link prediction and relation prediction.
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1 INTRODUCTION

In recent years, more and more large scale knowledge graphs [1, 3, 17, 18] have been constructed. They have been widely
used in many fields, such as dialogue system [33], machine translation [42] and entity linking [36]. However, with the

Authors’ addresses: JIAN SUN, School of Artificial Intelligence, University of Chinese Academy of Sciences and and National Laboratory of Pattern
Recognition, Institute of Automation, CAS, Beijing 100049, P.R.China, jian.sun@nlpr.ia.ac.cn; YU ZHOU, National Laboratory of Pattern Recognition,
Institute of Automation, CAS, and School of Artificial Intelligence, University of Chinese Academy of Sciences, and and Beijing Fanyu Technology Co.,
Ltd, Beijing 100049, P.R.China, yzhou@nlpr.ia.ac.cn; CHENGQING ZONG, National Laboratory of Pattern Recognition, Institute of Automation, CAS and
and School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, P.R.China, cqzong@nlpr.ia.ac.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


2 Jian Sun, Yu Zhou, and Chengqing Zong

rapid expansion and evolution of world knowledge, new entities and relations that are scarcely or even never covered
by established knowledge bases keep emerging. This means a large portion of KG relations are actually long-tail. As
shown in Figure 1, there is a large portion of relations that only have a few triples, and most deep neural-network-based
methods are difficult to deal with such data. In this paper, we aim to predict long-tail relations. Especially, we will tackle
the most challenging one-shot case, where only one sample is available for relation prediction.

The one-shot learning has been widely developed in KGs [4, 6, 14, 16, 24, 35, 40]. In knowledge graph completion,
[35] utilized the knowledge extracted by embedding models and learned a matching metric by considering both the
learned embedding and one-hop graph structures. [40] and [24] are two different few-shot relation learning frameworks.
[40] designed a recurrent autoencoder aggregation network to model interactions of few-shot reference entity pairs
and accumulate their expression capabilities for each relation. [24] adopted a stack of Transformer blocks to model
interactions of reference entity pairs. [40] and [24] enhance the entity embedding module in [35] and design a static
and dynamic attention aggregation module respectively. However, these above-mentioned methods focused on tail
entity prediction. They didn’t explore the one-shot relation predicting, which is the focus of this paper. Meanwhile, the
above methods take the representation of entities on both sides of the relation as the basis for the representation of the
relation, so it has relatively large requirements on the quality of entity embedding. For some newly added entities and
entities with few instances in the knowledge base (long-tail entities), the above methods are difficult to obtain a good
entity representation for these long-tail entities.
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Fig. 1. The histogram of relation frequencies in Wikidata.
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Fig. 2. An illustration that relation between an unseen entity
pair can be inferred by the information of paths.

In KGs, the characteristics of a relation can be represented by the entities at both ends. At the same time, the relations
can also reflect the characteristics of the entity to some extent. For example, if the relation connected to an entity is
Gender, the entity may be two different human names, but it must not be a location name. According to it, we design a
novel attention-based neighborhood aggregation method to encode entity, which uses the average of the relations as
the query and the relations as the key to design the attention mechanism.

Meanwhile, we model paths between entities as auxiliary information for relation representation to deal with invisible
entities. We identify all paths from the head entity to the tail entity in KGs. Each path is represented by its relation.
The paths modeling is beneficial. In Figure 2, on the left is the training example, and on the right is the test example.
The entity Malia Ann Obama is unseen during training; it is difficult to get a good representation of the entity Malia

Ann Obama. Nevertheless, we can infer the missing relation directly from the hidden rules in the path. For instance,
the embedding of a path (Spouse, Child) has a high similarity with relation Child after training. During the test,
even if the entity Malia Ann Obama does not have a good representation, we can correctly infer Malia Ann Obama is
Michelle Obama’s child by the path (Spouse, Child).
Manuscript submitted to ACM
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We combine neighborhood aggregation embedding and path embedding as the joint embedding feature of the
relations. Then, we input the joint embedding into the one-shot relation prediction framework. We design two one-shot
relation learning methods, prototypical network based method and convolution neural network based method. The
difference between the two methods is that the one-shot relation prediction framework based on the prototype network
has no parameters itself.

In summary, our main contributions as follows:

• We propose a one-shot relation prediction model that can predict the long-tail relation between entities.
• Different from other one-shot knowledge graph completion, we model paths between entities as auxiliary
information for relation representation to deal with invisible entities.

• We design a new training and testing method for one-shot relation learning, which can predict relations and
entities at the same time.

• Considered there are still few datasets specifically built for one-shot knowledge graph completion, we collect a
new dataset based on FB15k [3] dataset.

• The proposed method is evaluated on three datasets for one-shot knowledge graph completion. We report
state-of-the-art results under most of the experimental settings in these tasks.

2 RELATEDWORK

2.1 Embedding Models

Various embedding-based models have been developed to complete knowledge graphs automatically. The models project
the entities and relations into a low-dimensional vector space and define a score function to measure the plausibility of
each triple. The total likelihood of triples is finally maximized to learn the embedding of entities and relations. TransE
[3] regarded each relation as a translation vector between the head embedding and the tail embedding. Based on the idea
of TransE, more advanced models such as TransH [34], RotatE [26] have been proposed. TransH [34] introduced the
hyperplane with a normal vector to make the entities with different relations have different representation. RotatE [27]
was able to model and infer various relation patterns including symmetry, antisymmetry, inversion, and composition. It
defined each relation as a rotation from the source entity to the target entity in the complex vector space. There are
other embedding-based models like RESCAL [20], DistMult [37], TuckER [2], and ComplEx [29], which optimized a
scoring function with a bilinear product between vector embedding for each subject and object entity and a full rank
matrix for each relation.

Recently, various path-based embeddings models have been explored, for instance, a random walk relation inference
model, PRA [13], designed for predicting new relation instances in KGs. Path-RNN [19] uses a recurrent neural network
(RNN) to generate paths embedding and Das et al. [5] improves the performance of Path-RNN by multi-path combination
operator. Wang et al. [32] adaptively integrate the entity context and relational path through a learnable attention
mechanism to reason missing relation.

However, the above embedding-based models usually assume enough training instances for all relations and entities
and do not pay attention to those long-tail relations. These models do not perform well in predicting long-tail relations
without sufficiently large annotated data, especially large-scale KGs.
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2.2 One-Shot Learning

Deep learning usually does not fare well in few data cases. There are new classes that have never been seen before, and
only a few annotated samples can be used for each class. One-shot learning should be an effective method to solve these
few data cases. It could be roughly divided into three categories: model-based, optimization-based, and metric-based.

The model-based method aims to quickly update parameters on a few number of samples through the design of
the model structure and directly establish the mapping function of input and predicted value. For example, Santoro
et al. [23] proposed the method of memory enhancement to solve the few-shot Learning task based on Neural Turing
Machine, which could learn strategies of storing expressions into memory and predicted them according to these
expressions.

The optimization-based [7, 15, 22] method considers that ordinary gradient descent method is difficult to fit in the
few-shot scenario. It completes the task of small sample classification by adjusting the optimization method. Ravi
and Larochelle [22] used LSTM to express meta learner and used its state to express the updating of target classifier
parameters, and it learned how to initialize and update the learner network on the new classification task.

The metric-based method [12, 25, 30, 39] is to model the distance distribution between samples, so that similar samples
are close to each other and different samples are far away from each other. for example, Siamese Neural Networks [12]
and Prototype Networks [25]. Siamese Network [12] constructed different paired samples by combination and judged
whether they belonged to the same class by the distance of the samples and used the features extracted from the network
for few-shot learning. Prototype Network [25] was based on the idea that there existed a prototype expression for each
category, which is the mean value of the support set in embedding space. For a query sample, the Euclidean distances
between the query sample and all the support samples are calculated. The label of the least distance support samples is
regarded as the category of the query sample.

In information extraction Zong et al. [43], one-shot relation extraction [8–10, 21, 38, 41] aims to classify the relation
between two given entities based on their related context, which focuses on the text. In knowledge graph completion,
we consider completing an entity or relation based on the graph structure. Under the framework of one-shot learning,
entity completion has been widely studied [4, 6, 16, 24, 35, 40]. Lv et al. [16] adopted meta-learning to learn effective
meta parameters from high-frequency relations that could quickly adapt to few-shot relations. Motivated by the dual
process theory in cognitive science, Du et al. [6] proposed CogKR, which consisted of summary and reasoning modules.
The summary module probed the underlying relationship of a given instance, while the reasoning module constructed
cognitive a graph to infer the correct answer. MetaR [4] solved the few-shot link prediction by focusing on transferring
relation-specific meta information to make models learn the most critical knowledge and learn faster.

However, the one-shot relation completion is still barely explored. From this viewpoint, we design the one-shot
relation prediction framework based on neighborhood aggregation and paths encoding.

3 OUR APPROACHES

Knowledge graphs consist of a set of entities E and a set of relations R. Knowledge facts are stored as a collection of
triples G = {(ℎ, 𝑟, 𝑡)}, where ℎ ∈ E is the head entity, 𝑡 ∈ E is the tail entity and 𝑟 ∈ R is the relation that connects the
two entities.

In the task of knowledge graph completion, relation prediction is to predict relation 𝑟 between two existing entities:
(ℎ, ?, 𝑡 ) . So the one-shot relation prediction can be formalized as : given an entity pair (ℎ𝑟 , 𝑡𝑟 ), the correct relation is
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Fig. 3. An illustration of our one-shot relation prediction framework. AveRel-Embedding is the average embedding of adjacency
relations. ‘⊕’ denotes concatenation. ‘𝑓𝑚 ’ is the metric function.

𝑟 . However, in KGs, there may be few or even one instance (ℎ0, 𝑟 , 𝑡0) about relation 𝑟 . We need to utilize (ℎ0, 𝑟 , 𝑡0) to
correctly predict the relation of (ℎ𝑟 , 𝑡𝑟 ).

The model proposed for one-shot relation prediction consists of three modules: the attention-based neighborhood
aggregation module, the paths encoding module, and the one-shot relation prediction module. The attention-based
neighborhood aggregation module is to encode entities in the knowledge graphs, and the path encoding module is to
use the path as auxiliary information to alleviate the problem of insufficient entity encoding caused by long-tail entities.
Our overall model is shown in Figure 3.

3.1 Attention-based Neighborhood Aggregation

This module is designed to enhance the representation of each entity by aggregating neighborhood information
in knowledge graphs. In the local graph convolutional aggregation algorithms [35], the function of neighborhood
aggregation is:

𝑓GCN (N𝑒 ) = 𝜎 ( 1
|N𝑒 |

|N𝑒 |∑
𝑘=1

𝑔( [r𝑘 ; e𝑘 ])) (1)

where e𝑘 and r𝑘 are the vector representation of 𝑟𝑘 and 𝑒𝑘 . |N𝑒 | is number of relations, 𝜎 (·) is the activation function,
𝑔(·) is the full connection layer. We can see that all neighborhood sets of entities 𝑒 are treated equally in representing 𝑒 .
However, most relationships between entity 𝑒 and adjacent entities are different. Intuitively, they should contribute
differently in representing 𝑒 . So we build an attention mechanism in our model to select the relevant information in a
designated graph neighborhood.

We design the attention-based neighborhood aggregation module based on the hypothesis that, in knowledge graphs,
a certain amount of relation connected with an entity can reflect the characteristics of the entity to some extent. If the
adjacency relation of one entity is similar to that of another entity, the characteristics of these two entities are also
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relatively close. For example, entity Steve Jobs and entity Elon Musk may have similar adjacent relations, such as
Nationality, Gender, Company, etc. However, the adjacency relation between entity Steve Jobs and entity Car may
be quite different.

For any given entity 𝑒 , the neighborhood set of 𝑒 is asN𝑒 = {(𝑟𝑘 , 𝑒𝑘 ) | (𝑒, 𝑟𝑘 , 𝑒𝑘 ) ∈ G}. The purpose of neighborhood
aggregation is to encode N𝑒 and output a vector as the latent representation of entity 𝑒 . The function of neighborhood
aggregation is:

𝑓 (N𝑒 ) = tanh(
|N𝑒 |∑
𝑘=1

𝛼𝑒
𝑘
𝑔 ( [r𝑘 ; e𝑘 ])) (2)

𝛼𝑒
𝑘
=

exp (𝑔att ( [r𝑘 ;𝑞𝑒 ]))∑ |N𝑒 |
𝑗=1 exp

(
𝑔att

(
[r𝑗 ;𝑞𝑒

]
)
) (3)

𝑞𝑒 =
1

|N𝑒 |
∑

(r𝑘 ) ∈N𝑒

r𝑘 (4)

where e𝑘 and r𝑘 are the vector representation of 𝑟𝑘 and 𝑒𝑘 with dimension 𝑑 . |N𝑒 | is number of relations, tanh(·) is the
activation function, 𝑔(·) and 𝑔att (·) are the full connection layers.

We use the average of the relations as query and the relations as key, giving different weights to different relations. At
the same time, when the final entity embedding is generated according to the weight, we also fuse the information of the
adjacent entity. Therefore, the embedding of the final entity contains common characteristics and unique characteristics
that are different from other entities. It is worth noting that we only encode the local graph of the entity and perform
one-step propagation. This ensures that the module is applied quickly to large knowledge graphs.

3.2 Paths Encoding

This module is designed to model paths between entity pairs, which is auxiliary information for relation representation.
Given a pair of entities (ℎ𝑟 , 𝑡𝑟 ), 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑢 } is a set of paths between pairs of entities, where 𝑝𝑙 = {𝑟1, 𝑟2, ..., 𝑟𝐿}
is 𝑙-th path, where 𝐿 is the length of 𝑝𝑖 . Note that we do not use the identity of entities when modeling paths, in order
to enhance the representation of some entity pairs that contain unseen entities during training.

3.2.1 Paths learning. We adopt LSTM to encode paths into vector representations.

h𝑗
𝑙
, c𝑗
𝑙
= LSTM(r𝑗

𝑙
, [h𝑗−1

𝑙
, c𝑗−1]) (5)

where h𝑗−1
𝑙

and c𝑗−1
𝑙

is the hidden state and cell state, respectively. We use the final output state h𝐿
𝑙
of the LSTM as

the representation of 𝑙-th path. The advantage of RNN for path embedding is that it can capture the similarity among
different relational paths based on the sequence of relations.

3.2.2 Attention-based paths aggregation. Given the embedding of each path, then we design the attention-based path
combination module.

o𝐿𝑖 ,m
𝐿
𝑖 = LSTM(h𝐿𝑖 , [o

𝐿
𝑖−1,m

𝐿
𝑖−1]) (6)

𝑎𝑖 = softmax(W1o𝐿𝑖 ) (7)

h𝑜𝑢𝑡(ℎ𝑟 ,𝑡𝑟 ) =
𝑈∑
𝑖=1

𝑎𝑖o𝐿𝑖 (8)
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where ℎ𝐿
𝑖
is the embedding of 𝑖-th path between entity pair (ℎ𝑟 , 𝑡𝑟 ). o𝐿𝑖−1 andm

𝐿
𝑖−1 is the hidden state and cell state. Note

that we take a fixed number of paths for each entity pairs, here, it is𝑈 .W1 ∈ 𝑅𝑑×1 are parameters to be learned. h𝑜𝑢𝑡(ℎ𝑟 ,𝑡𝑟 )
is the final path representation after attention aggregation. It is worth noting that there is no sequential relationship
between paths. We use the LSTM here only to obtain the attention weight between similar paths. We also use other
paths aggregation methods, for example, the Mean-based paths aggregation method, the Max-Pooling-based paths
aggregation method, and the Sum-based paths aggregation method.

3.2.3 Joint embedding. Finally, we combine the representation of entity pairs with the representation of paths as the
characteristics of a relation.

RC(ℎ𝑟 , 𝑡𝑟 ) = W2 ( [𝑓
(
Nℎ𝑟

)
; 𝑓

(
N𝑡𝑟

)
]) + h𝑜𝑢𝑡(ℎ𝑟 ,𝑡𝑟 ) (9)

whereW2 ∈ 𝑅2𝑑×𝑑 are parameters to be learned. Here we use a simple addition operation to merge the two parts of the
information.

3.3 One-shot Relation Prediction

Given the attention-based neighborhood aggregation module and paths encoding module, now we discuss the one-shot
relation prediction module.

The settings for one-shot learning are described in Algorithm 1. In order to simulate the one-shot learning mode of
testing set, which predicts the relations of the entity pairs according to one relation instance, in the train stage, we
sample randomly𝐶 relations from the collection of relation in training data. For each relation 𝑟𝑖 in𝐶 , we select randomly
one triple as the support triple 𝑆𝑖 = {(𝑠ℎ𝑖 , 𝑟𝑖 , 𝑠𝑡𝑖 ) |𝑖 = 1, ..,𝐶} and 𝑛 triples as query triples 𝑄𝑖, 𝑗 = {(𝑞ℎ 𝑗

, 𝑟𝑖 , 𝑞𝑡 𝑗 ) |𝑖 =

1, ...,𝐶, 𝑗 = 1, ..., 𝑛}. Then we get a training task 𝑇𝑐 = {𝑆𝑖 , 𝑄𝑖, 𝑗 }. All tasks in training from the meta-training set, denoted
as 𝑇𝑚𝑡𝑟 = {𝑇𝑐 }. Given a query entity pair q𝑘 = (ℎ𝑘 , 𝑡𝑘 ) in 𝑄𝑖, 𝑗 , the one-shot learning method thus could be trained on
the task set by ranking the support entity pair s𝑖 = (ℎ𝑖 , 𝑡𝑖 ) in 𝑆𝑖 . After training with meta-training set, the model can be
used to predict relation in testing. The method of meta-testing is similar to meta-training.

In addition, we also suppose that the model has access to a background knowledge graph G′ (see 4.1), which is a
subset of G. The relations among background knowledge graph, training set, validation set, and test set are disjoint,
and the entities in the training set, validation set, and test set can be found in the background knowledge graph. The
function of background knowledge graphs G′ is to get the neighborhood set of entity 𝑒 and generate paths between
entity pairs. Figure 4 shows an example of the distribution of entities and relations in the dataset. Meanwhile, to enrich
path information and neighborhood information, we add inverse triples to G′, which have been proved to be effective
in knowledge graphs completion.

We apply the function of neighborhood aggregation and paths encoding to the query entity pair q𝑘 = (𝑞ℎ𝑘 , 𝑞𝑡𝑘 ) in
𝑄𝑖, 𝑗 and each support entity pair s𝑖 = (ℎ𝑖 , 𝑡𝑖 ) in 𝑆𝑖 , we get two joint vectors: RC(ℎ𝑘 , 𝑡𝑘 ) and RC(ℎ𝑖 , 𝑡𝑖 ). Next, we need to
calculate the similarity between the two joint vectors, which is used to predict the relation.

In this section, we design the similarity metric function based on the fixed metric method and the learned metric
method, respectively. In the fixed metric method, Euclidean distance is used as a similarity metric function. In the
learned method, we design the metric function based on convolutional neural networks.
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Fig. 4. An illustration of our dataset construction.

Algorithm 1 One-shot relation prediction
Input:

Background knowledge graphs Training data;
Initial parameter;

1: for epoch = 0:M do
2: Sample 𝐶 relations from the training data
3: Empty support set 𝑆 and query set 𝑄
4: for 𝑐 in 𝐶 do
5: Sample one triple about 𝑐 and add it to 𝑆
6: Sample 𝑛 triples about 𝑐 and add to 𝑄
7: end for
8: Get a training task 𝑇 = {𝑆,𝑄}
9: for 𝑞𝑘 in 𝑄 do
10: for 𝑠𝑖 in 𝑆 do
11: Calculate the metric scores based on joint embedding for query triple 𝑞𝑘 and support triple 𝑠𝑖
12: end for
13: end for
14: Calculate the loss
15: Update parameter using gradient
16: end for

3.3.1 Fixed Metric Method. The relation prediction model based on the fixed metric used here is the prototypical
networks [25]. The prototypical networks project the samples in each category into space. Then the mean of samples in
this space is used as the prototypical center of this category.

In one-shot learning, there is only one sample data in each category, so the embedding of the instance is considered
the prototypical center of this category.

c𝑖 = 𝑔enc (RC(ℎ𝑖 , 𝑡𝑖 )) (10)

𝑔enc (x) = x + 𝐷𝑟𝑜𝑝 (W3 (𝑅𝑒𝐿𝑈 (W4x + b4)) + b3) (11)

where c𝑖 is the prototype for relation 𝑟𝑖 , and RC(ℎ𝑖 , 𝑡𝑖 ) is the joint embedding of (ℎ𝑖 , 𝑡𝑖 ) in the triple 𝑆𝑖 = (ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖 ).
𝑔enc (·) is an encoder network, whereW3 andW4 are learnable parameter, b3 and b4 are bias.
Manuscript submitted to ACM
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Then we calculate the Euclidean distance between the query entity pair and the prototypical center c𝑖 . We use
Euclidean distance as a metric function here.

𝑓𝑚 (q𝑘 , c𝑖 ) = | |𝑔enc (RC(ℎ𝑘 , 𝑡𝑘 )) − c𝑖 | |2 (12)

where 𝑓𝑚 (q𝑘 , c𝑖 ) is the distance between the query entity pair q𝑘 and the prototypical center c𝑖 . We perform relation
prediction by ranking the distance, which can be considered as a multi-classification process. We use the cross-entropy
loss function commonly used in multi-classification problems as the loss function of relation prediction. Remarkably,
the distance is negatively correlated with similarity. The loss function is as follows,

𝑙𝑜𝑠𝑠 = −
𝑛𝐶∑
𝑘=1

𝐶∑
𝑖=1

𝑦𝑖 log𝜎 (−𝑓𝑚 (q𝑘 , c𝑖 )) (13)

where 𝑦𝑖 is the label vector with dimension 𝑅1×1, we apply the softmax function 𝜎 = (·) to the distance. Optimizing this
loss function can help the approximate distance between query entity pair and support entity pair of the same relation.

The Euclidean metric method is simple and effective. However, the Euclidean metric is a fixed metric method. It only
simply calculates the distance between two points in space and lacks the learning process.

3.3.2 Learned Metric Method. In this section, we design the learned metric method for one-shot relation prediction
based convolutional neural networks (CNNs). Inspired from the success in computer vision [28], we use neural networks
instead of fixed metric function. Following the one-shot learning settings, we first extract randomly 𝐶 relation from
the datasets and construct the support set 𝑆 = {(ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖 )}𝑚𝑖 by sampling randomly one entity pair for each relation.
We extract a batch of entity pairs from the remaining data of the 𝐶 relation as query sets 𝑄 = {(ℎ 𝑗 , 𝑟 𝑗 , 𝑡 𝑗 )}𝑛𝑖 . We first
compute the representation of the support entity pair and the query entity pair based on neighborhood information of
entity pairs:

s𝑖 = 𝑔enc (RC(ℎ𝑖 , 𝑡𝑖 )) (14)

q𝑘 = 𝑔enc (RC(ℎ𝑘 , 𝑡𝑘 )) (15)

Given the representations of the support entity pair and the query entity pair, next, we need to calculate the similarity
between the two representations. We first combine the representations into 2D reshaping. It is treated as an input for
a 2D convolutional layer. Using 2D convolutions can increase the expressiveness of the model through interaction
between entities. The output of the convolutional layer is a vector. The vector is projected to a scalar by the full
connection layers.

𝑓𝑚 (s𝑖 ; q𝑘 ) = 𝑓𝜃 (𝑓c ( [s𝑖 ; q𝑘 ])) (16)

where the shape of [s𝑖 ; q𝑘 ] is 2-D, 𝑓c (·) is the convolution function, 𝑓𝜃 (·) are the full connection layers. Unlike the
scoring function in fixed metric method, here the score is positively correlated with similarity.

Following the fixed metric method, we use the cross-entropy loss function as the loss function of relation prediction.
The loss function is as follows

𝑙𝑜𝑠𝑠 = −
𝑛𝐶∑
𝑘=1

𝐶∑
𝑖=1

𝑦𝑖 log𝜎 (𝑓𝑚 (s𝑖 ; q𝑘 )) (17)

where 𝑦𝑖 is the label vector with dimension 𝑅1×1, 𝜎 = softmax(·).
In the learned metric method, we capture the interaction between two entities through convolutional neural networks.

Utilizing the interaction, the model can reasonably predict the deep relations between entities.
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Dataset Ent Rel Triples Tasks
NELL-One 68,545 358 181,109 67
Wiki-One 4,838,244 822 5,859,240 183
FB15k-One 14,950 1212 508,791 68

Table 1. Statistics of datasets used in experiments. ‘Tasks’ denotes the number of relations we use as one-shot tasks. After removing
the relations in ‘Tasks’, the facts of remaining relations are used as background knowledge graphs.

4 EXPERIMENTS AND RESULTS ANALYSIS

4.1 Datasets

We evaluate one-shot relation prediction on the NELL-One, Wiki-One, and FB15k-One, where the NELL-One and
Wiki-One are created by Xiong et al. [35] based on real-world KGs NELL [18] and Wiki [31].

We construct FB15k-One dataset based on FB15k [3] dataset. We first count the number of triples for each relation in
FB15k, then we select some relations as our task. In this paper, our task consists of 68 relations. We remove all triples
associated with the 68 relations from the original FB15k to obtain the background knowledge graphs. We also need to
make sure that all entities in the removed triples are visible in the background knowledge graphs. Finally, we divide the
68 relations and related triples into 53/5/10 to get the training set, the validation set and the test set.

The statistics of datasets are shown in Table 1. For NELL-One, we use 51/5/11 task relations for training/validation/testing.
For Wiki-One, the division ratio is 133/16/34, and FB15k-One, the ratio is 53/5/10. Note that the Wiki-One dataset is an
order of magnitude larger than any other benchmark datasets regarding the numbers of entities and triples.

Figure 5 is the statistics of paths between entities in the test set. In NELL-One, we can see that most pairs of entities
in the test set do not have paths whose length is less than or equal to 2. As the length of the path increases, the path
information between the entity pairs becomes more and more abundant. In Wiki-One, almost all entities have no path
information between them, which means that most entities in the Wiki-One test data occur only once. In FB15k-One,
path information between entities is significantly richer than that of NELL-One and Wiki-One.

4.2 Baseline Methods

In our experiments, we compare the following embedding-based methods: TransE [3], DistMult [37], ComplEx [29],
RotatE [26]. For these models, we use the code released by Sun et al. [26]. We also experiment on the GMatching
model [35]. As for CogKR and Meta-KGR models, they are specially designed to predict entity, so it is difficult to apply
the model to relation prediction tasks. On the neighborhood aggregation module, we conducted some experiments to
verify the effectiveness of attention-based neighborhood aggregation. Here, the neighbor aggregation baseline module
contains the graph convolution neural encoding module (GCN) in Xiong et al. [35], the graph neural network encoding
module (GNN) in Du et al. [6], the adaptive neighbor encoding module in FAAN [24], and the heterogeneous neighbors
encoding in FSRL [40].

4.3 Some Details

We use the Adam [11] algorithm for training the model. Our models are implemented by PyTorch and run on NVIDIA
GeForce GTX TITAN X Graphics Processing Units. We set the number of neighborhoods to 50 and the learning rate to
0.005. The epoch in experiments is 300. In the learning metric method, number of kernels is [16, 32] and kernel size is
[2 × 2, 1 × 2]. The dimension of entity and relation embedding is set to 128 in NELL-One and FB15k-One. In Wiki-One,
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Fig. 5. Statistics of paths between entities in test set.

the dimension of embedding is 80. For paths encoding, the length of paths 𝐿 is 2, and the number of paths𝑈 is 4. In
training stage, the configuration of our models for the relation prediction task is 𝐶 = 20, 𝑛 = 50.

Figure 6 shows our relation prediction framework. We predict the relation between query entity pairs by sorting the
triples in the support set. During training, we choose triples in 𝐷𝑟𝑡𝑟𝑎𝑖𝑛 as support triples without considering the triples
in background knowledge graphs. However, During testing, the size 𝐶𝑡𝑒𝑠𝑡 of the support set in meta-testing is equal to
the number of all relations in the test set, training set and G′. In other words, on FB15k-One, NELL-One, and Wiki-One,
the size of the support set during testing is 1212 − 5 = 1207, 358 − 5 = 353, 822 − 16 = 806, respectively.

In embedding-based methods, during training, we extract a triple randomly for each relation from testing set and
add it to the dataset made up of background knowledge graph G′ and training set, which together serve as the training
set for the embedding models. The details can be seen Figure 7.

Figure 8 is an example of the baseline models GMatching [35], FRSL [40], FAAN [24]) for relation prediction task,
where we change the test method to adapt to our tasks. These models construct a set of negative queries by randomly
corrupting the tail entity of a positive triple. Then they use a hinge loss function to optimize their model. Since these
models are used to predict entities, we design new test methods to fit our relation prediction task. The details can be
seen Figure 8(b).

4.4 Results and Analysis

The main results of our module are shown in Table 2, KGs embedding baselines and GMatching one-shot learning results
are shown at the top of the table. The results on fixed metric methods (FMetric) combined with different neighborhood
aggregation methods are shown in the middle. We also show the results of combining the learned metrics method
(LMetric) with different entity coding methods at the bottom of Table 2. The bold numbers denote the best results in
the test. We use to mean reciprocal rank (MRR) and Hits@1 to evaluate different models, where MRR is the average of
the reciprocal ranks of results and Hits@1 is the proportion of correct alignment ranked in top-1. Higher Hits@1 and
MRR indicate better prediction performance.
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Fig. 6. Example of our relation prediction framework

Background Knowledge Graphs Training Validation Testing

Training Validation Testing

Fig. 7. Examples of data construction based on embedding-based methods for FB15k-One

We can see that the performance of the embedding models ComplEx on the small dataset is higher than that of
GMatching. In FB15k-One, there is a lack of information about entity types, so GMatching doesn’t apply here. However,
on the large Wiki-One dataset, all the embedding models have poor performance. On the contrary, the improvement
of GMatching is obvious on Wiki-One. It suggests that One-shot learning has more advantages than the embedded
model in large datasets. Meanwhile, comparing the performance of FMetric and LMetric with GMatching, it can be
seen that our relation prediction module has surprising results. In particular, in NELL-One, comparing GMatching, our
GNN-FMetric model improves MRR value by a margin of 89%, Hits@1 value by a margin of 118%. The GCN-FMetric
model improves MRR by a margin of 146%, and Hit@1 by margin 199%. The GNN-LMetric model improves MRR values
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Fig. 8. Example of baseline models for relation prediction

by a margin of 79% and increases Hit@1 values by 81%. The GCN-LMetric model improves MRR by a margin of 108%,
and Hit@1 by margin 145%. In Wiki-One, comparing GMatching, the GNN-FMetric model improves MRR values by a
margin of 41% and improves Hit@1 values by a margin of 33%. The GCN-FMetric model improves MRR by a margin of
87%, and Hit@1 by margin 92%. The GNN-LMetric model improves MRR values by a margin of 45% and increases Hit@1
values by 46%. The GCN-LMetric model improves MRR by a margin of 89%, and Hit@1 by margin 109%. It can also be
seen from the above results that in relation prediction task, the training and testing mode of our model is better than
that of GMatching. We can analyze the reasons according Figure 6 and Figure 8. In Figure 6, our training and testing
processes are consistent. Since the relation between the triples in the support set is different, the model can distinguish
the characteristics of different relations after training. However, in Figure 8, the meta-training task in GMatching don’t
take into account the differences between relations, which we think is the main reason for the poor performance.

4.4.1 One-shot learning methods. Next, focus on comparing the FMetric model with LMetric, as can be seen from
Table 2, in NELL-One, the performance of the FMetric-based model is better than that of all LMetric-based model. In
FB15k-One, MRR values and Hit@1 values have increased slightly. In Wiki-One, MRR values and Hit@1 values went
up 2.6% and 8.4%, respectively. Under the same neighborhood aggregation method, the performance of the fixed metric
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model NELL-One FB15k-One Wiki-One
MRR Hits@1 MRR Hits@1 MRR Hits@1

DistMult [37] .392 .227 .187 .085 .008 .001
TransE [3] .057 .012 .148 .101 .010 .002
ComplEx [29] .468 .302 .212 .137 .009 .001
RotatE [26] .066 .025 .078 .054 .009 .001
GMatching [35] .262 .168 - - .179 .123
GNN-FMetric [6] .494 .367 .369 .243 .252 .164
GCN-FMetric [35] .645 .502 .559 .391 .335 .236
FSRL-FMetric [40] .505 .365 .408 .306 .131 .089
FAAN-FMetric [24] .522 .398 .334 .244 .121 .084
Att-FMetric .662 .523 .572 .394 .369 .263
GNN-LMetric [6] .469 .304 .465 .318 .259 .180
GCN-LMetric [35] .544 .411 .582 .422 .338 .257
FSRL-LMetric [40] .373 .221 .242 .129 .095 .048
FAAN-LMetric [24] .353 .230 .197 .113 .089 .054
Att-LMetric .582 .431 .590 .424 .358 .267

Table 2. Relation prediction results in different baseline models.

method is slightly superior to that of the learned metric method. It is worth noting that, once trained, our framework
can be used to predict any newly added relations without fine-tuning.

4.4.2 Neighborhood aggregation methods. In neighborhood aggregation experiments based on FMetric, Att-FMetric
outperforms all baseline aggregation methods on all datasets. In LMetric, we can get the same conclusion. We analyze
that although the neighborhood relations are considered in updating entity embedding, only a simple average operation
is performed, which results in all neighborhood relations some decisive relations being as important as some unimportant
ones, thus causing some noise. Meanwhile, GNN-FMetric requires all entities to be present when training the model.
Surprisingly, in the attention-based FSRL and FAAN, our relation prediction model do not perform well. We analyze
that the main reason is that these models do not integrate relations into the final representation of entities, which
may help in predicting the relations between entities. In general, attention aggregation is slightly better than other
aggregation methods in both one-shot learning models.
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FB15k-One NELL-One Wiki-OneMethods Hits@1 MRR Hits@1 MRR Hits@1 MRR Avg

max 0.336 0.5 0.332 0.476 0.185 0.302 0.355
mean 0.317 0.486 0.368 0.518 0.219 0.323 0.372
sum 0.317 0.474 0.344 0.498 0.189 0.301 0.354Att-LMetric

attn 0.424 0.59 0.431 0.582 0.267 0.358 0.442
max 0.352 0.546 0.385 0.543 0.268 0.35 0.403
mean 0.358 0.525 0.373 0.513 0.271 0.351 0.396
sum 0.383 0.556 0.353 0.516 0.271 0.353 0.405GCN-LMetric

attn 0.422 0.582 0.411 0.544 0.257 0.338 0.426
max 0.305 0.437 0.524 0.659 0.243 0.34 0.418
mean 0.335 0.492 0.523 0.65 0.23 0.323 0.426
sum 0.325 0.468 0.524 0.666 0.235 0.33 0.425Att-FMetric

attn 0.394 0.572 0.523 0.662 0.263 0.369 0.464
max 0.352 0.523 0.513 0.641 0.25 0.352 0.439
mean 0.341 0.505 0.473 0.613 0.259 0.352 0.424
sum 0.375 0.537 0.481 0.622 0.247 0.343 0.434GCN-Fmetric

attn 0.391 0.559 0.502 0.645 0.236 0.335 0.445
Table 3. Relation prediction results in different paths aggregation models.

4.4.3 Paths aggregation methods. We compare the four different paths aggregation methods, Attention-based paths
aggregation, Mean-based paths aggregation methods, Max-Pooling-based paths aggregation method, and Sum-based
paths aggregation methods. In FB15k-One, the best performance model is the model of combination Attention-based
paths aggregation and Att-LMetric. In NELL-One, the Sum-based paths aggregation method is superior to other
aggregation methods. In Wiki-One, we can get a conclusion similar to that in NELL-One. On the whole, the Attention-
based paths aggregation method is better than the other three paths aggregation methods.

4.5 Ablation Study on Paths Encoding

4.5.1 Number of paths. We investigate the sensitivity of our model to the number of paths for each entity pair. The
results on NELL-One are shown in Figure 9. We can see that increasing the number of paths does not significantly affect
the results. This may be because a large number of entity pairs have little or no path with a length of 2 between them.
For example, in the path set of the NELL-One database with a length of 2, ‘1702’ entity pairs have no path, accounting
for about 79%. This may cause that the number of paths is not very sensitive to the experimental results.

4.5.2 Ablation study on attention aggregation . In order to analyze the role of each component in attention aggregation,
we conducted ablation experiments on FB15k-One. The results are shown in Table 4.

‘w/o Average Relation’ means that we use entities representation instead of average relation as the query. ‘w/o
Relation as Key’ signifies that we use the entity embedding as key in equation 3. ‘w/o Aggregate Relation’ indicates
that only tail entities are aggregated in the final information fusion. ‘w/o Neighbor Encoder’ represents the final
representation of an entity without aggregated neighborhood information. We can see that both the averaged relations
as query and relation as key play important roles in our model. Another important observation is that the aggregation
of relation turns out to be essential.
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Configuration Hits@1
Att-LMetric 42.36%
w/o Relation as Key 41.08%
w/o Average Relation 35.48%
w/o Aggregate Relation 24.55%
w/o Neighbor Encoder 20.64%

Table 4. Ablation studies on Att-LMetric.

We also construct the paths encoding ablation experiments. The results are shown in Figure 10, where ‘FB’ means
FB15K-One, ‘NE’ is NELL-One, ‘A’ means attention, ‘G’ means GCN, ‘L’ is LMetric, and ‘F’ is FMetric. It is clear to see
that path information can significantly increase the value of Hits@1. It shows that it is necessary to introduce path
encoding as the supplementary information of relational characteristics.

4.6 Entity Prediction
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Fig. 11. Example of linking prediction test framework

We also apply our relation prediction framework to entity prediction. Figure 11 is our entity prediction training
framework. We add a batch of negative instance triples for each triplet in the support set by corroding entities to form a
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new support set. The results are shown in Table 5, where ‘Best’ is the best result of the different initializations , ‘Rand’
is the result of random initialization and all the results do not contain paths information.

model Hits@1 Hits@5 Hit@10 MRR
RESCAL .089 .186 .229 .140
TransE .043 .141 .192 .093
DisMult .066 .126 .177 .102
ComplEx .086 .086 .223 .131
MetaR(Pre-train) .093 .238 .331 .164
GMatching (Best) .133 .260 .313 .188
GMatching (Rand) .103 .186 .252 .151
GCN-FMetric (Rand) .121 .230 .313 .177
Att-FMetric (Rand) .146 .293 .357 .213

Table 5. One-shot for linking prediction on NELL-One.

The above results show that our relation prediction framework also has an excellent performance in the linking
prediction tasks.

We also observe that the results on different relations are actually of high variance. For some relations such
as athleteInjuredHisBodypart, teamCoach and geopoliticalLocationOfPerson, entities associated with these
relations appear less frequently in KGs. These entities can be thought of as long-tail entities. Therefore, the existence of
long-tail entities brings some difficulties to the linking prediction. Especially teamCoach, the tail entity is the name of
the person, which is difficult to distinguish.

MRR Hits@10
Relations Candidates GMatching Att-FMetric GMatching Att-FMetric
sportsGameSport 123 .424 .975 1.0 .973
athleteInjuredHisBodypart 123 .025 .031 .015 .088
animalSuchAsInvertebrate 786 .447 .359 .626 .585
automobilemakerDealersInCountry 1084 .453 .318 .821 .789
sportSchoolIncountry 2100 .534 .484 .745 .745
politicianEndorsesPolitician 2160 .093 .146 .226 .268
agriculturalProductFromCountry 2222 .120 .121 .288 .338
producedBy 3174 .085 .311 .179 .566
automobilemakerDealersInCity 5716 .026 .318 .040 .789
teamCoach 10569 .017 .011 .024 .021
geopoliticalLocationOfPerson 11618 .028 .002 .035 .007

Table 6. Results decomposed over different relations.

Meanwhile, by comparing Table 7 and Figure 10 (NE-A-F and NE-G-F), we can see that the addition of negative
instances does not affect the performance of relation prediction. Therefore, our model can perform relation prediction
and linking prediction well at the same time.
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model Hits@1 MRR
GCN-FMetric (Negative sample) .476 .606
Att-FMetric (Negative sample) .497 .644

Table 7. One-shot for relation prediction on NELL-One.

5 CONCLUSION AND FUTUREWORK

This paper introduces a one-shot relation prediction framework based on attention neighborhood aggregation and
paths encoding that could be used to predict long-tail relations in KGs. We design the attention mechanism based on an
average relation query, so the embedding of the entity contains not only common features but also unique features.
Meanwhile, we selectively fuse path information between entity pairs as auxiliary information to reduce the impact of
long-tail entities. Then we design the one-shot relation prediction framework based on the fixed metric method and
learned metric method. The experimental results on three datasets demonstrate that our one-shot relation learning
framework is superior to the current embedding models and one-shot learning baseline model in link prediction and
relation prediction. In future work, we will extend our model for integrating more abundant information.
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