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a b s t r a c t

Existing domain adaptation methods for classifying textual emotions have the propensity to focus on
single-source domain exploration rather than multi-source domain adaptation. The efficacy of emotion
classification is hampered by the restricted information and volume from a single source domain.
Thus, to improve the performance of domain adaptation, we present a novel multi-source domain
adaptation approach for emotion classification, by combining broad learning and deep learning in this
article. Specifically, we first design a model to extract domain-invariant features from each source
domain to the same target domain by using BERT and Bi-LSTM, which can better capture contextual
features. Then we adopt broad learning to train multiple classifiers based on the domain-invariant
features, which can more effectively conduct multi-label classification tasks. In addition, we design a
co-training model to boost these classifiers. Finally, we carry out several experiments on four datasets
by comparison with the baseline methods. The experimental results show that our proposed approach
can significantly outperform the baseline methods for textual emotion classification.

© 2022 Published by Elsevier B.V.
1. Introduction

Nowadays, existing textual emotion classification methods fo-
us on investigating single-domain [1]. However, few of them
xplore cross-domain emotion classification. In addition, most
xisting approaches for domain adaptation focus on perform-
ng cross-domain sentiment classification (CDSC) under a single-
ource scenario. If there is a prominent difference in feature
istribution between source and target domains, its performance
ill decline heavily, which is called ‘‘negative transfer’’ [2–4].
owever, multi-source domain adaptation (MDA) is more feasible
nd valuable than that single-source domain adaptation, which
as attracted more and more attention in academia and industry.
Existing methods for CDSC may be classified into two types:

ingle-domain and multi-domain. The single-domain method
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aims to utilize the useful knowledge learned from a source do-
main to help the target domain. While the multi-domain method
needs to learn useful knowledge from multiple source domains.
For example, Khan et al. [5] adopted SVM for CDSC; Lin et al. [6]
adopted generative adversarial networks (GAN) [7] for CDSC.
Khan’s method usually applies the similarity-based transfer learn-
ing approach for capturing domain invariant features. However,
they may neglect the long-distance interdependent features. Lin’s
method usually utilizes GAN to extract the domain-invariant
features. However, it needs to solve the intrinsic problem of GAN
variants in training stability.

Despite the progress made by the above methods, there are
still many challenges for MDA. The first is that the same word
may deliver different emotions in different domains. For instance,
the word ‘‘long’’ may deliver many different emotions. In the
domain of smartphones, ‘‘long’’ expresses a positive emotional
tendency, while ‘‘long’’ expresses a negative emotional tendency
in catering service. The second is that long-distance interdepen-
dent features are difficult to be captured effectively. The last is
that most existing methods on MDA are DL-based models, which
have some disadvantages (e.g., GAN may fall into the problem of
non-convergence and model collapse).
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To address the above challenges, we present a novel approach,
called Multi-source Broad Learning (MBL), for MDA-based emo-
tion classification. Specifically, we first design a model to extract
domain-invariant feature (DIF) from each source domain to the
same target domain, by adopting bidirectional encoder repre-
sentation from transformers (BERT) [8] and bi-directional long
short-term memory network (Bi-LSTM) [9]. Then, based on DIFs,
multiple classifiers can be trained by exploiting broad learning
(BL) [10] with the labeled data. In addition, we design a co-
training model to boost together these classifiers. Finally, exten-
sive experiments are conducted on four datasets by comparison
with the baseline methods. The experimental results show that
MBL outperforms the baseline methods.

The main contributions in this article are summarized as fol-
lows:

• We present a new transfer learning approach to address
the MDA-based emotion classification task, by combining DL
(i.e., Bi-LSTM and BERT) and BL models.
• We adopt BERT and Bi-LSTM to design an extraction model

for DIF, which is exploited to train multiple classifiers. And
then a co-training model is designed to boost these classi-
fiers.
• We collect four real-world datasets involving four differ-

ent domains from public E-commerce platforms, for MDA-
based emotion classification. The relevant experimental re-
sults show that our proposed approach can significantly
outperform the baseline methods.

The remainder of this article is organized as follows: In Sec-
tion 2, we introduce the research progress of multi-source CDSC
and BL. In Section 3, we describe the structure and principle of
MBL. In Section 4, we introduce experimental datasets, compare
the proposed method with baseline methods, and provide analy-
sis of experimental results. In Section 5, we conclude this article
and discuss our future work.

2. Related work

In this section, we introduce related work from three dimen-
sions. The first dimension is related to the multi-source domain
adaptation method; the second is related to the cross-domain
sentiment classification method; and the last is related to BL.

2.1. Multi-source domain adaptation

Li et al. [11] investigated the domain discrepancy between
pairwise sources and provided a better bound for it. Hoffman
et al. [12] proposed a method to derive a bound for the domain
discrepancy by using DC programming. Guo et al. [4] presented a
method for multi-source CDSC, based on a point-to-set distance
metric. Chen et al. [2] presented a GAN-based framework for
MDA, by using generative adversarial nets. Wright and Augen-
stein [13] explored the problem of MDA by using large pre-
training transformer models, domain adversarial training, and the
mixture of expert techniques. Yin et al. [14] proposed a universal
framework for MDA by using a pseudo-margin vector.

2.2. Cross-domain sentiment classification

Existing methods for CDSC may be classified into as follows:
single-source CDSC and multi-source CDSC.

(1) Single-source CDSC
Wang et al. [15] presented a CDSC method by integrating

two non-negative matrix tri-factorizations into a joint optimiza-
tion framework. Zhang et al. [16] presented a CDSC method by
using an interactive attention transfer network. Li et al. [17]
2

presented a CDSC approach based on a hierarchical attention
transfer network. Du et al. [18] proposed a model to derive the
domain-invariant features using BERT. Du et al. [19] proposed a
framework to share domain-invariant information between the
source and target domain, based on the Wasserstein-based trans-
fer network. Zhou et al. [20] proposed a sentiment-aware pre-
trained model (i.e., SENTIX) to learn domain-invariant sentiment
knowledge from large-scale review datasets. Peng and Zhang [21]
proposed a weighted domain-invariant representation learning
framework for CDSC.

(2) Multi-source CDSC
Khan et al. [5] presented a method for multi-source CDSC,

based on cosine similarity and the SVM model. Zhao et al. [22]
presented a method for multi-source CDSC tasks based on MDA
and joint learning. Xu et al. [23] proposed an MDA approach for
CDSC, called HANN. Yang et al. [3] presented a MDA method with
a Granger-causal objective for CDSC. Lin et al. [6] presented an
MDA method for visual sentiment classification, called MSGAN.
Dai et al. [24] proposed a method for multi-source CDSC by using
multi-task learning. Zhao et al. [25] presented an instance-level
MDA framework, called C–CycleGAN, for cross-domain textual
sentiment classification with multi-sources. Dai et al. [26] pro-
posed an MDA approach for unsupervised CDSC by designing an
adversarial shared-private model. Fu and Liu [27] proposed an
MDA method for unsupervised CDSC based on the Wasserstein
distance.

2.3. Broad learning

BL was presented by Chen and Liu [10], which includes fea-
ture mapping nodes and enhancement nodes in a wide manner,
instead of stacking and deeply expand neurons. Then, the output
weight is calculated by the pseudo inverse. Compared with DL
methods, BL takes on some advantages like simple network struc-
ture, short training time, and strong generalization ability. It is
an effective alternative method for DL, and need not be retrained
when new nodes are added in the training process, only need to
extend the incremental learning model. BL has achieved better
results in many applications, such as emotion classification [28],
cross-domain emotion classification [29], and negative emotion
detection [30].

In summary, different from these methods, we introduce Kull-
back Leibler (KL) [31], DL, and BL to extract DIFs concurrently, and
train multiple classifiers based on DIFs.

3. Approach

At first, we provide a problem definition for MDA-based emo-
tion classification and introduce the KL metric to measure the
divergence between the probability distribution of any two ran-
dom variables. Then, we provide a detailed description of how to
obtain DIF between the target domain and each source domain.
At last, we further describe how to fuse them by using the
co-training algorithm. The framework of MBL is shown in Fig. 1.

3.1. Problem definition

For MDA task, we define k source domains Ds = {Ds1,Ds2, . . . ,
Dsk} and a target domain Dt . Suppose that we have labeled data
Xsj =

{
xisj, y

i
sj

}Nsj
i=1

, j = 1, 2, . . . , k in the jth source domain
Dsj, where Nsj denotes the total number of labeled data for Dsj.
n addition, suppose that we also have a set of unlabeled data
tu =

{
xitu
}Ntu
i=1 and a few labeled data Xtl =

{
xitl, y

i
tl

}Ntl
i=1 in Dt ,

where Ntu and Ntl denote the total number of unlabeled data
and labeled data for Dt , respectively. The purpose of multi-source
cross-domain emotion classification is to train k robust classifiers
by utilizing the labeled data in multi-source and target domains

and then adopting them to predict the unlabeled target data.
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.2. Kullback–Leibler divergence (KL)

KL was proposed to measure the probability distribution di-
ergence between any two random variables. As a measure for
he asymmetry of the two probability distributions, KL has been
idely adopted to reduce domain shifts in domain adaptation.
Given two domains Ds and Dt , KL is defined as follows:

L
(
Xsj, Xt

)
=

Nsj∑
i=1

xisj log

(
xisj
xitl

)
(1)

where Nsj denotes the amount of samples of jth source domain.
When two distributions are the same, KL between them is set to
zero.

3.3. Overview of broad learning

The main idea of BL is that word embeddings generated by
BERT are linearly mapped intom groups of feature nodes and then
feature nodes are nonlinearly mapped into n groups of enhance-
ment nodes. Finally, feature nodes and enhancement nodes are
input into the output layer to obtain the probability distribution
of emotions. During the training process of BL, the weights of
feature nodes and enhancement nodes are generated randomly
and fixed, and the weights of the output layer are optimized by
the ridge regression method.

Given a train set {X, Y } ∈ RN×(D+C), where N denotes the total
number of samples, D denotes the dimension of word embedding,
and C denotes the number of emotion types, word embeddings
X are linearly mapped into m groups of feature nodes. The hth
group of feature nodes Fh is represented as follows:

Fh = φ
(
Xθfh + βfh

)
∈ RN×p, h = 1, 2, . . . ,m (2)

where φ denotes linear activation function, p denotes the number
of feature nodes in each group, and θfh and βfh denote weight and
bias generated randomly, respectively.

Suppose Fm ∆
= [F1, F2, . . . , Fm] denotes the matrix concate-

nated by m groups of feature nodes. Fm is nonlinearly mapped
into n groups of enhancement nodes. The ith group of enhance-
ment nodes Ei is represented as follows:

Ei = ϕ
(
Fmθei + βei

)
∈ RN×q, i = 1, 2, . . . , n (3)

where ϕ denotes nonlinear activation function (e.g., tanh, sig-
moid), q denotes the total number of enhancement nodes in each
3

group, and θei and βei denote weight matrix and bias matrix
enerated randomly, respectively.
Suppose En ∆

= [E1, E2, . . . , En] denotes the matrix concate-
ated by n groups of enhancement nodes. The actual input of BL is
oncatenated by Fm and En, which can be represented as follows:

A =
[
Fm, En]

∈ RN×(mp+nq) (4)

Thus, the final output of BL can be represented as follows:

Ŷ =
[
g
(
Xθf 1 + βf 2

)
, . . . , g

(
Xθfm + βfm

)
|ϕ
(
Fmθe1 + βe1

)
, . . . , ϕ

(
Fmθen + βen

)]
θ

= [F1, F2, . . . , Fn |E1, E2, . . . , Em ] θ
=
[
F n, Em] θ

= Aθ

(5)

where θ denotes the weights of output layer.
Thus, according to matrix analysis theory, θ can be repre-

sented as follows:

θ = A+Y (6)

where A+ denotes the pseudo inverse matrix of A.
The overall training process of BL is listed in Algorithm 1.

Algorithm 1 The training process of BL

Input: input data X
Output: output weights θ

1: for k = 1; k ≤ m do
2: randomly generate θfk, βfk

3: calculate Fk = φ
(
Xθfk + βfk

)
4: end for
5: set feature nodes Fm ∆

= [F1, F2, ..., Fm]
6: for i = 1; i ≤ n do
7: randomly generate θei, θei
8: calculate Ei = ϕ (Fmθei + βei)
9: end for
0: set enhancement nodes En ∆

= [E1, E2, ..., En]
1: set A = [Fm, En] and calculate output weights θ

According to the analysis on Algorithm 1, the time complexity
of BL is O(rmp+ rnq).
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.4. Feature extraction

Since BERT is a self-supervised learning method, it conducts
re-training on large-scale unlabeled corpus by using a Trans-
ormer Encoder structure and converts the distance between
wo words at any position into vector representation by using
he attention mechanism. It can effectively solve the problem
f long-distance dependency in natural language processing, and
imultaneously obtain rich semantic information in a text. In
ddition, compared with LSTM, CNN, and RNN, Bi-LSTM can better
apture contextual information in a text. Thus, to effectively
onduct MDA-based emotion classification, we adopt BERT and
i-LSTM to extract DIF.
Firstly, we utilize BERT to generate word embeddings for

ource labeled data Xsj in jth source domain Xsj, and target labeled
data Xtl, which are represented as follows:

Hsj = BERT
(
Xsj; θ

1
j

)
∈ R(Nsj l)×768

Htl = BERT
(
Xtl; θ

1
j

)
∈ R(Ntl l)×768

(7)

where BERT denotes the representations of DIF encoded by BERT,
θ1
j denotes the corresponding parameter, and l denotes the se-
uence length.
Then, based on these representations, the contextual features

nd long-distance dependencies can be extracted by Bi-LSTM. The
ncoding results for jth source domain Xsj and Xtl can be described
s follows:

sj = BiLSTM
(
Hsj; θ

2
j

)
∈ RNsj×r

Ftl = BiLSTM
(
Htl; θ

2
j

)
∈ RNtl×r

(8)

where BiLSTM denotes the representations of DIF encoded by Bi-
LSTM, θ2

j denotes the corresponding parameter, and r denotes the
epresentation dimension.

As to DIF, we hope it can encode features shared by both
ource and target domains. From the probability distribution
iew, we hope that the distributions of the mapped outputs
btained by DIF from source and target data are similar. Thus,
e utilize KL regularizer onto the features of source data Fsj and
arget data Ftl. KL divergence can be defined as follows:
kl
j = KL

(
Fsj, Ftl

)
(9)

The distribution discrepancy between Fsj and Ftl can be re-
uced by minimizing the loss Lklj , which contributes to obtain
IF.

.5. BL-based classifier

BL has two advantages: (1) The features can be nonlinearly
apped into high-dimensional feature space to further extract
eep semantic information; (2) It needs only to update the
eights of the output layer by ridge regression, so the compu-
ational cost is very low. Based on textual features extracted by
ERT and Bi-LSTM, BL is adopted to further capture semantic
eatures in texts from both source and target domains, and to
esign a domain-invariant classifier (DIC) based on DIF.
According to BL theory, Fsj and Ftl are nonlinearly mapped into
groups of enhanced nodes. Thus, the ith group of enhanced
odes for the jth source domain can be represented as follows:

ij = ϕ
([
Fsj, Ftl

]
θei + βei

)
∈ R(Nsj+Ntu)×q, i = 1, 2, . . . , n (10)

Suppose En
j

∆
=
[
E1j, E2j, . . . , Enj

]
denotes the matrix concate-

ated by n groups of enhancement nodes of the jth source do-
ain. Therefore, the output of DIC can be described as follows:

ˆ
[ ]

3 3 (11)
j = Fsj, Ftl, Ej θj = Ajθj

4

where Aj denotes all the input features of DIC, and θ3
j denotes the

eight of output layer of DIC.
In the inference stage to predict Xtu, we weight and sum the

utput of each DIC to obtain the emotion of the unlabeled target
amples, which can be described as follows:

ˆ =

k∑
j=1

Ŷj (12)

.6. Co-training

The co-training process of this method is divided into two
teps: (i) training an encoder of DIF for each source–target do-
ain pair; (ii) training a classifier DIC for each DIF. As to DIF,

he classification loss on DIF is utilized to measure the difference
etween ground truth and the prediction of the source domain
nd target domain. Since minimum entropy can help to constrain
he predicted values of target domain samples and to increase
he distance between the target sample and classification de-
ision boundary, to obtain higher confidence for the prediction
esults in the target domain, we conduct entropy minimization
or the probability distribution of each kind of sample, and its loss
unction is represented as follows:

c
j = −

1
Nsj + Ntl

Nsj∑
i=1

yisj logQ
(
yisj
⏐⏐F i

sj

)
− ηj

1
Nsj + Ntl

Ntl∑
m=1

ymtl logQ
(
ymtl
⏐⏐Fm

tl

) (13)

here F i
sj and Fm

tl denote the encoding result of Bi-LSTM for the ith
source example xisj and the mth target example xmtl , respectively,
and ηj denotes the weight of target domain loss.

Thus, the total loss function includes the difference measured
y KL divergence between feature distributions of each source
nd target domain, and the minimum entropy loss in each source
nd target domain, which is represented as follows:

=

k∑
j=1

(Lcj + δjLklj ) (14)

here δj denotes the weight of loss Lklj .
As to DIC, we need to obtain an appropriate θ3

j to maintain the
ifference between Yj and Ŷj as small as possible. Thus, the ridge
egression is adopted as objective function, which is described as
ollows:

rgmin
θ3j

(Yj − Ŷj

2
2
+ λ

θ3
j

2
2

)
(15)

here λ denotes the regularization parameter and Yj denotes the
round truth label for the data of jth source and target.
Thus, according to the regularized least square method, θ3

j can
e represented as follows:
3
j =

(
λI + AjAT

j

)
−1AT

j Yj (16)

Here, we regard DIF for each source–target domain pair as
ndependent spaces given because of target domain data. Based
n DIF, we train DIC concerning for to parameter θ3

j and employ
oth a small number of target-labeled data and source-labeled
ata to train DIC.
Thus, through the above deducing, the algorithm of MBL is

hown in Algorithm 2.
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Table 1
Statistics of datasets.
Name Happy Moving Sad Angry Fear Disgusted Surprise Total

Clothing 1699 1035 1819 1483 1014 2014 1237 10301
Electronics 2316 1453 1727 1602 1405 1405 1410 11318
Hotel 1426 1498 1661 1537 1175 1456 1256 10009
Movie 1500 1464 1375 1669 1337 1145 1510 10000
Algorithm 2 MBL Algorithm

Input: T : max iteration;
k: the total number of source domain;
Xsj: the source domain labeled data;
Xtl: the target domain labeled data;
Xtu: the target domain unlabeled data;

utput: emotion classification results Ŷ
1: Training:
2: set t = 1;
3: while t ≤ T do
4: for each source domain labeled data (Xs1, Xs2, ..., Xsk) do
5: obtain DIF based on Xsj and Xtl by Equ. 7 and Equ. 8;
6: calculate KL divergence onto Fsj and Ftl by Equ. 9;
7: obtain DIC based on Fsj and Ftl by Equ. 10 and Equ. 11;
8: train DIF by optimizing Equ. 14;
9: train DIC by calculating Equ. 16;
0: predict Xtu by Equ. 12;
1: select p samples X j

tu with the highest confidence from Xtu;
12: end for
13: remove samples X1

tu ∪ X2
tu ∪ · · · ∪ Xk

tu from Xtu and add them
to Xtl;

14: t ← t + 1
15: end while
16: Testing:
17: use MBL to predict Xtu and obtain Ŷ ;

According to Algorithm 2, the time complexity of MBL is
(lr2+rmp+rnq). The time complexity of SVM, Bi-GRU, TextCNN,

DANN, and UMDA is O(rl2), O(lr2), O(uvlr2), O(rl2), and O(rl2),
espectively, where l denotes the sequence length, r denotes the
epresentation dimension, v denotes the kernel size of convolu-
ion, and u denotes the number of convolution layers.

In BL, m, n, p, and q are set to a small value, respectively. In
eneral, they are smaller than r , and l is far larger than m, n, p,
nd q. Thus, the time complexity of MBL approximately is O(lr2)
nd is smaller than that of SVM, TextCNN, DANN, and UMDA. In
ddition, the time complexity of Bi-LSTM is close to Bi-GRU.

. Experiments

.1. Datasets

Since there is a lack of public datasets for cross-domain emo-
ion classification, we have collected product reviews as the
xperimental datasets from well-known E-commerce platforms,
uch as Douban, Ctrip, Jingdong, and Taobao. These datasets
ontain four domains: movie (M), hotel (H), electronics (E), and
lothing (C). There is a total number of 41,628 reviews for the four
atasets, and there are seven emotion classes, including happy,
oving, angry, sad, fear, disgusted, and surprise. The detailed
tatistics are shown in Table 1.
According to these data, we constructed 12 cross-domain

even classification tasks. In each domain adaptation task, there
re 1000 labeled source domain examples, 1000 unlabeled tar-
et domain examples, and 50 labeled target domain examples

elected for training data. In addition, to effectively fine-tune the

5

hyper-parameters, 500 target examples are selected as develop-
ing data, and the remainder of examples are treated as testing
data. Each baseline method and MBL adopt this setting.

4.2. Baseline methods

In this paper, many experiments are carried out to com-
pare our proposed MBL with the following baseline methods:
SVM [32], Bi-GRU [33], TextCNN [34], DANN [35], and UMDA [14].

• SVM: It is a non-domain-adaptive method.
• Bi-GRU: It is a non-domain-adaptive method, which is im-

plemented by adopting Bi-GRU.
• TextCNN: It is a convolutional neural network for emotion

classification without considering contextual information of
a text.
• DANN: It is a domain-adaptive method, which utilizes the

domain classifier for minimizing the discrepancy between
two domains in an adversarial training manner.
• UMDA: It is an adversarial training method for universal

multi-source adaptation.

4.3. Implementation detail

In our experiments, all the word embeddings for texts are
initialized to generate 768-dimension vectors. MBL was imple-
mented with the Chinese BERT pre-training model presented by
Cui et al. [36], which is composed of 12 transformer blocks and
is pre-trained by a large amount of Chinese corpus (including
Chinese Wikipedia, news). The nodes of the hidden layer for Bi-
LSTM are set to 200. The enhancement nodes of BL are composed
of 20 groups, with 50 nodes in each group, and the activation
function is tanh.

Model optimization was performed by using the AdamW up-
date strategy [37] with the weight decay set to 0.01 and the initial
learning rate set to 1e−5. The corresponding hyperparameters to
the best performance for the validation set are obtained by grid
search, and the weight of the loss item is set by δ = 0.5, η = 1,
the factor for each iteration of co-training p is set by 5, and the
regularization parameter λ is set by 0.001.

4.4. Main results

To verify MBL’s effectiveness, we compare it with the base-
line methods. We adopt classification accuracy to evaluate these
methods. The experimental results for each method are shown in
Tables 2 and 3, respectively. The overall comparison for accuracy
is shown in Fig. 2. As to Table 2, C+E→H indicates that domains
C and E are utilized as source domains, which are transferred
to target domain H. As to Table 3, C+E+M→H indicates that
domains C, E, and M are utilized as source domains, which are
transferred to target domain H.

As to Tables 2 and 3, we evaluate our method over 12 transfer
pairs and 4 transfer pairs, respectively, on a total number of
41,628 testing samples. From Tables 2 and 3, it is found that
MBL can achieve consistently the best classification performance
on accuracy for the benchmark datasets. Compared with SVM,
Bi-GRU, TextCNN, DANN, and UMDA, MBL outperforms SVM by
28.18%, 23.33%, 7.76%, 6.41%, and 4.26% on average for two source
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Table 2
The accuracy of different methods with two source domains.
Source→Target SVM Bi-GRU TextCNN DANN UMDA MBL-KL MBL

C+E→H 0.5059 0.5975 0.7896 0.8318 0.842 0.8758 0.9098
C+M→H 0.6120 0.6512 0.8307 0.825 0.8871 0.9155 0.9388
M+E→H 0.7376 0.7927 0.8762 0.8562 0.8643 0.8764 0.9247
M+E→C 0.5790 0.6301 0.8172 0.7944 0.7905 0.8234 0.8401
M+H→C 0.5204 0.5844 0.7579 0.7803 0.7831 0.8130 0.8236
H+E→C 0.6128 0.6898 0.7611 0.7646 0.7768 0.7692 0.8019
H+E→M 0.5543 0.5862 0.7348 0.7539 0.8042 0.8013 0.8216
C+E→M 0.5129 0.5490 0.6867 0.7055 0.7378 0.7286 0.7437
C+H→M 0.5394 0.5771 0.7890 0.8103 0.8210 0.8273 0.8570
H+C→E 0.6197 0.6662 0.8266 0.8413 0.8625 0.8867 0.9209
H+M→E 0.6256 0.6556 0.8038 0.8628 0.8876 0.8960 0.9285
C+M→E 0.6389 0.6600 0.8354 0.8452 0.8713 0.8849 0.9289
Average 0.5882 0.6367 0.7924 0.8059 0.8274 0.8416 0.8700
Table 3
The accuracy of different methods with three source domains.
Source→Target SVM Bi-GRU TextCNN DANN UMDA MBL-KL MBL

C+E+M→H 0.7365 0.8086 0.8668 0.8811 0.8881 0.9163 0.9392
C+E+H→M 0.568 0.5992 0.8135 0.8297 0.8348 0.8529 0.8751
C+H+M→E 0.6513 0.6853 0.8577 0.8683 0.9086 0.9053 0.9336
H+E+M→C 0.6374 0.7104 0.8203 0.8030 0.8054 0.8247 0.8478
Average 0.6483 0.7009 0.8396 0.8455 0.8592 0.8748 0.8989
F

D
l
d
i
e
w

Fig. 2. The overall comparison for the accuracy of different methods.

omains, respectively, and by 25.06%, 19.80%, 5.93%, 5.34%, and
.97% on average for three source domains, respectively.
In addition, compared with the accuracy on two source do-

ains, the result of three source domains for each baseline
ethod is improved by 6.01%, 6.42%, 4.72%, 3.96%, and 3.18%,

espectively, which shows that the more source domains, the
etter accuracy for cross-domain emotion classification.
To verify the effects of domain adaptation more intuitively,

e also conduct an experiment by comparing MBL with a variant
ithout KL metric, named MBL-KL. The average accuracy of MBL-
L is 84.16% and 87.48% for two source domains and three source
omains, respectively, which are 2.84% and 2.41% lower than
BL, respectively. The comparison between MBL-KL and MBL, it

mplies the importance of KL to improve the accuracy of MDA.

.5. Effect of labeled target data

To effectively analyze the effect on MBL from the number of
abeled target data, we conduct the experiment to analyze the
ffect on accuracy under different amount of labeled target data
n tasks C+H→M and C+H+M→E, respectively, by comparing
 T

6

Fig. 3. The effect on accuracy from different amount of labeled target data on
task C+H→M.

DBL with DANN and UMDA. The specific results are shown in
Figs. 3 and 4.

From Figs. 3 and 4, we provide the comparison between base-
line methods UMDA, DANN, and MBL under a setting that some
labeled target data are randomly selected, and then mixed with
the training data, and a similar trend on two kinds of transferring
methods from the experimental results can be obtained in other
pairs. The effect on accuracy under different amounts of labeled
target data on the tasks: C+H→M and C+H+M→E are shown in
igs. 3 and 4, respectively.
From Fig. 4, it is found that the accuracy of MBL, UMDA, and

ANN is 88%, 85.3%, and 83%, respectively, when the number of
abeled target data is zero. When the number of labeled target
ata increases, the accuracies of MBL, UMDA, and DANN are
mproved by 5%, 5.8%, and 4%, respectively, and reached 50. How-
ver, the accuracies of MBL, UMDA, and DANN increase slightly,
hen the number of labeled target data changes from 50 to 70.
In addition, similar phenomena can also be found in Fig. 3.
hus, Figs. 3 and 4, it implies that the difference between these
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Fig. 4. The effect on accuracy from different amount of labeled target data on
ask C+H+M→E.

Fig. 5. The effect on accuracy from different groups of enhancement nodes on
the tasks C+E→H, C+M→H, and M+E→H.

hree methods almost remains unchanged as the amount of la-
eled target data increases, and MBL can also maintain its domi-
ant position. These trends show that MBL is more effective in the
ase of less labeled target data, and further benefits from more
abeled target data.

.6. Effect of groups of enhancement nodes

To effectively analyze the effect on MBL from different groups
f enhancement nodes, we experiment to analyze the effect
n accuracy under different amount of groups of enhancement
odes. We demonstrate the accuracy variation for MDA-based
motion classification under different groups of enhancement
odes. The specific results are shown in Figs. 5, 6, 7, and 8.
From Figs. 5, 6, 7, and 8, it is found that the accuracy increases

lightly as to most tasks, as the number of groups of enhancement
odes increases. It means that the enhancement nodes can effec-
ively improve the performance of MBL. For example, as to tasks
+M→E and C+M→E, when the group of enhancement nodes
s 20, MBL achieves the best performance. However, the accuracy
f MBL begins to decrease when the group of enhancement nodes
ontinues to increase. The main reason is that the ability of each
roup of enhancement nodes in BL is limited, rather than in-
initely increasing with the increase of the group of enhancement
odes. Thus, we set the group of enhancement nodes to 20 in our
ther experiments.
 t

7

Fig. 6. The effect on accuracy from different groups of enhancement nodes on
the tasks M+E→C, M+H→C, and H+E→C.

Fig. 7. The effect on accuracy from different groups of enhancement nodes on
the tasks H+E→M, C+E→M, and C+H→M.

Fig. 8. The effect on accuracy from different groups of enhancement nodes on
the tasks H+C→E, H+M→E, and C+M→E.

4.7. Effect of loss function weight

In the final loss function, the hyperparameters η and δ are
efined in Eqs. (13) and (14), respectively, which can determine
he importance of KL and BL, respectively. We explore the effect
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Table 4
Accuracy comparison of BERT+Bi-LSTM+BL with BERT+CNN+BL, BERT+RNN+BL, and BERT+LSTM+BL.
Source→Target Bi-LSTM CNN RNN LSTM

C+E→H 0.9098 0.9041 0.8956 0.8925
M+H→C 0.8236 0.8255 0.8101 0.8181
C+H+M→E 0.9336 0.9287 0.9264 0.9227

Average 0.8890 0.8861 0.8774 0.8778
Fig. 9. The effect on accuracy from the parameters η and δ on the task C+E→H.

Fig. 10. The effect on accuracy from the parameters η and δ on the task
+M→E.

f η and δ on the overall performance of MBL by changing their
alues from 0.2 to 1 with a step size of 0.2, respectively. For
xample, the experimental results on the tasks C+E→H and
+M→E are shown in Figs. 9 and 10, respectively.
From Figs. 9 and 10, it is found that the classification accuracy

ncreases as the value of η increases from 0.9 to 1. The main
eason is that large target domain weights can help MBL to learn
arget domain knowledge more effectively. It is also found that
BL can achieve better classification accuracy when η ∈ [0.9, 1]

and δ ∈ [0.4, 0.6] for most tasks. Thus, we set η = 1 and δ = 0.5
in our experiments.

4.8. Superiority of BERT+Bi-LSTM+BL

To verify the superiority of combining BERT and BI-LSTM
for extracting features, we experiment by comparing MBL (i.e.,
BERT+Bi-LSTM+BL) with BERT+CNN+BL, BERT+RNN+BL, and
BERT+LSTM+BL, on the tasks C+E→H, M+H→C, and C+M+H
→E. The specific results are shown in Table 4.
8

From Table 4, it is found that the accuracy of BERT+Bi-
LSTM+BL outperforms BERT+CNN+BL, BERT+RNN+BL, and
BERT+LSTM+BL in most tasks. Thus, we adopt BERT and Bi-LSTM
to extract textual features in MBL.

4.9. Discussion

We provide a brief analysis of the limitations of our proposed
method MBL.

(1) To validate the framework presented in this article, we
have constructed a multi-domain emotion classification dataset
in Chinese and conducted experiments on it. Compared with
available methods and relevant parameters, MBL can achieve
good results on the cross-domain dataset. Due to the lack of an
English dataset for multi-domain emotion classification, it fails
to verify the performance and adaptation of MBL on the English
dataset.

(2) MBL may be regarded as a combining method, feature-
based as well as model-based. Though it can utilize the Chinese
dataset for multi-domain emotion classification, MBL may depend
on specific data and network models heavily. Another aspect is
that MBL needs to train a model with numerous data in the target
domain and to perform a wider range of NLP tasks. Thus, we need
to verify MBL with other NLP tasks in the future.

5. Conclusion and future work

In this article, we explored the practicability of MDA emotion
classification by using Bi-LSTM and BL and conducted extensive
experiments on four different domain datasets from the public
E-commerce platforms. The experimental results showed that
our proposed method can reach a performance of 87.00% and
89.89% via two and three source domains, respectively, in terms
of accuracy, which is a significant improvement over the base-
lines. Compared with most of the previous methods, our proposed
method MBL can effectively improve performance by using BERT,
KL metric, and Bi-LSTM to extract DIFs, and the combination of
Bi-LSTM and BL could be beneficially employed in the MDA task.
As to our future work, we plan to combine other deep learning
models and BL for MDA tasks, and to classify multi-modal cross-
domain emotion. We hope this work can potentially provide
some new insights and perspectives for research on MDA.
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