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Prompt learning has emerged as a new paradigm for leveraging pre-trained language models (PLMs) and has shown promising

results in downstream tasks with only a slight increase in parameters. However, the current usage of ixed prompts, whether

discrete or continuous, assumes that all samples within a task share the same prompt. This assumption may not hold for tasks

with diverse samples that require diferent prompt information. To address this issue, we propose an instance-aware prompt

learning method that learns a diferent prompt for each instance. Speciically, we suppose that each learnable prompt token

has a diferent contribution to diferent instances, and we learn the contribution by calculating the relevance score between

an instance and each prompt token. The contribution weighted prompt would be instance aware. We apply our method to

both unidirectional and bidirectional PLMs on both language understanding and generation tasks. Extensive experiments

demonstrate that our method achieves comparable results using as few as 1.5% of the parameters of PLMs tuned and obtains

considerable improvements compared to strong baselines. In particular, our method achieves state-of-the-art results using

ALBERT-xxlarge-v2 on the SuperGLUE few-shot learning benchmark1.

CCS Concepts: · Computing methodologies→ Natural language understanding, Natural language generation.

Additional Key Words and Phrases: Pre-trained language model, Prompt learning, Parameter-eicient tuning, Few-shot

learning

1 INTRODUCTION

Prompt learning aims to design or learn appropriate prompts which can induce the capacity of pre-trained
language models (PLMs) to perform speciic tasks, and it becomes a new paradigm to use PLMs due to its

1We have released our code in: https://github.com/jinfeihu-stan/IPL

Authors’ addresses: Feihu Jin, jinfeihu2020@ia.ac.cn, Institute of Automation, Chinese Academy of Sciences (CAS), School of Artiicial

Intelligence, University of Chinese Academy of Sciences, No. 95 Zhongguancun east road, Beijing, China, 100089; Jinliang Lu, Institute

of Automation, Chinese Academy of Sciences (CAS), the School of Artiicial Intelligence, University of Chinese Academy of Sciences, No.

95 Zhongguancun east road, Beijing, China, 100089, lujinliang2019@ia.ac.cn; Jiajun Zhang, Institute of Automation, Chinese Academy of

Sciences (CAS), the School of Artiicial Intelligence, University of Chinese Academy of Sciences, No. 95 Zhongguancun east road, Beijing,

China, 100089, jjzhang@nlpr.ia.ac.cn; Chengqing Zong, Institute of Automation, Chinese Academy of Sciences (CAS), the School of Artiicial

Intelligence, University of Chinese Academy of Sciences, No. 95 Zhongguancun east road, Beijing, China, 100089, cqzong@nlpr.ia.ac.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2375-4699/2023/6-ART $15.00

https://doi.org/10.1145/3604613

ACM Trans. Asian Low-Resour. Lang. Inf. Process.

https://github.com/jinfeihu-stan/IPL
https://doi.org/10.1145/3604613
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604613&domain=pdf&date_stamp=2023-06-14


2 • Feihu Jin, Jinliang Lu, Jiajun Zhang, and Chengqing Zong

Instance 1
"word": "acquisition", "sentence1": "The child's acquisition of language.", 

"sentence2": "That graphite tennis racquet is quite an acquisition."  label:  false .

Instance 2
"word": "sense", "sentence1": "Particle detectors sense ionization.", "sentence2": 

"She immediately sensed her disdain."   label:  false .

Prefix tuning

[�1 �2 ⋅⋅⋅ ��] The child's acquisition of language, That graphite tennis racquet is 

quite an acquisition. Similar sense of  "acquisition" ?   TRUE.

[�1 �2 ⋅⋅⋅ ��] Particle detectors sense ionization, She immediately sensed her 

disdain. Does acquisition have the same meaning in both sentences? TRUE.

Ours

[�1′ �2′ ⋅⋅⋅ ��′] The child's acquisition of language, That graphite tennis racquet is 

quite an acquisition. Similar sense of  "acquisition" ?  FALSE.

[�1′′ �2′′ ⋅⋅⋅ ��′′] Particle detectors sense ionization, She immediately sensed her 

disdain. Does acquisition have the same meaning in both sentences? FALSE.

Fig. 1. The example is chosen from the WiC dataset in SuperGLUE. Prefix tuning uses the same prompt for all samples, while

our method learns a special prompt for each instance, yields the correct answer.

lexibility and fewer extra parameters. There are two types of prompts: discrete prompts and continuous prompts.
Discrete prompts, such as those used in GPT-3 [Brown et al. 2020], use task instructions and task-related instances
as prompts for zero-shot and few-shot learning, respectively. PET/iPET [Schick and Schütze 2021a,b] utilizes
the manually-designed prompts to reformulate many tasks as cloze questions (e.g., by appending phrases such
as "Similar sense of two sentences?") and performs gradient-based ine-tuning with smaller PLMs. However,
designing discrete prompts manually can be time-consuming and labor-intensive, and therefore, several eforts
have focused on searching for proper discrete prompts automatically [Gao et al. 2021; Shin et al. 2020; Zhong
et al. 2021].
Although discrete prompts can relect rationality from the perspective of humans, it may not be necessarily

suitable for PLMs. To tackle this problem, a lot of studies begin to focus on continuous prompts. The continuous
prompt is another form of prompt learning method, which mainly includes two methods: prompt tuning [Lester
et al. 2021] and preix tuning [Li and Liang 2021]. Lester et al. [2021] propose prompt tuning and concatenate
the ixed continuous prompts with instances in the embedding layer of PLMs. When using small PLMs, the
performance of prompt tuning has a clear gap with ine-tuning. Li and Liang [2021] propose preix tuning and
show comparable results with ine-tuning on generation tasks. Preix tuning prepends learnable preix vectors to
the key (� ) and the value (� ) of the multi-head attention at each layer of the transformer and only optimizes
0.1%~3% parameters of the model. However, the current usage of discrete and continuous prompts assumes that
all samples in one task share the same prompt, and does not consider the diversity of the instances, which require
diferent prompt information. In Figure 1, we show that preix tuning uses the same prompt for all samples that
give wrong answers, while our method learns a unique prompt for each instance, yields the correct answer.
Therefore, it is desirable to learn a special prompt for each instance.

In this paper, we propose an Instance-aware Prompt Learning method (abbreviated as IPL) which learns a
unique prompt for each instance. As shown in Figure 2, two manually-designed patterns (e.g., diferent colors
mean diferent patterns) are used to formalize the instances into cloze-style questions and fed into the pre-trained
language model (PLM). As we can see, using diferent prompts can lead to diferent answers for each instance,
where pattern 1 may be suitable for instance 1 while pattern 2 may it instance 2, indicating that each instance
requires a speciic prompt. However, it is challenging to dynamically identify a suitable discrete prompt for each
instance. To address this issue, we propose using a look-up module to obtain a dynamic continuous prompt for
each instance. Speciically, we treat each learnable prompt token as a query and calculate its contribution to
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Instance 1

"word": "acquisition", "sentence1": "The child's acquisition of 

language.", "sentence2": "That graphite tennis racquet is quite an 

acquisition."  label:  false .

Instance 2
"word": "sense", "sentence1": "Particle detectors sense ionization.", 

"sentence2": "She immediately sensed her disdain."   label:  false .

Pattern 1

The child's acquisition of language, That graphite tennis racquet is 

quite an acquisition. Similar sense of  "acquisition" ?   FALSE.

Particle detectors sense ionization, She immediately sensed her disdain. 

Similar sense of  "sense" ? TRUE.

Pattern 2

The child's acquisition of language, That graphite tennis racquet is 

quite an acquisition. Does acquisition have the same meaning in both 

sentences? TRUE.

Particle detectors sense ionization, She immediately sensed her disdain. 

Does sense have the same meaning in both sentences? FALSE.

Fig. 2. The example is chosen from the WiC dataset in SuperGLUE. The color words indicate the manually-designed paterns

which are used to formalize the instance into close-style questions.

each instance through the look-up module. This way, each learnable prompt token has a diferent impact on
the instance, and the weighted continuous prompts can guide the pre-trained language models to perform the
downstream task in an instance-aware manner.

Our approach is evaluated on both natural language understanding (NLU) and generation (NLG) tasks. For NLU
tasks, we conduct experiments on SuperGLUE [Wang et al. 2019] with RoBERTa [Delobelle et al. 2020]. For NLG
tasks, we conduct experiments on summarization using GPT-2 [Radford et al. 2019]. The experimental results
on various tasks demonstrate that our method, with as few as 1.5% of the parameters of PLMs tuned, achieves
comparable results with ine-tuning and obtains signiicant improvements over strong baselines. Notably, our
method achieves a new state-of-the-art on the SuperGLUE few-shot learning benchmark using ALBERT-xxlarge-
v2 [Lan et al. 2020]. In summary, our key contributions can be listed as follows:

• We propose an instance-aware prompt learning method that can learn a unique prompt for each instance.
• Extensive experiments on both language understanding and generation tasks under both unidirectional
and bidirectional PLMs verify the efectiveness of our method.

• Detailed analyses verify that IPL can indeed dynamically learn appropriate continuous prompts for each
instance.

2 APPROACH

In this section, we present the details of our instance-aware prompt learning method IPL. Previous studies have
shown the promise of prompt learning for downstream tasks. However, using ixed prompts (e.g., discrete prompts
like "convert the table into a sentence" or continuous prompts after optimization) for diverse instances in one
task ignores the peculiarity of diferent instances. To address this problem, our IPL model is designed to learn a
special prompt for each speciic instance. We irst introduce prompt learning and then present the details of our
IPL model.

ACM Trans. Asian Low-Resour. Lang. Inf. Process.
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2.1 Prompt Learning

For the standard paradigm of pre-training and ine-tuning, there is a gap (e.g., inconsistent objective function)
between the pre-training stage and the ine-tuning stage. Fortunately, prompt learning bridges this gap by
formalizing the downstream tasks into the form of a conditional language model or masked language model. The
discrete prompt is an important method in prompt learning. For example, given a masked language modelM, we
can use a prompt to formulate a question-and-answer instance � (e.g., [passage] Can you have too much oxygen
in your body? where [passage] represents the context information.) as follows:

�̂ = � the answer is [MASK].

Then �̂ is fed intoM, and letM determine whether "Yes" or "No" is more appropriate to replace [MASK] [Gao
et al. 2021].

Continuous prompt is an alternative approach in prompt learning. As shown in Figure 3(a), �� , �� ∈ R�×� are
two sets of preix vectors, � , � ∈ R�×� denote key and value that are the projection of the input {�1,�2, · · ·,��}.
Preix tuning [Li and Liang 2021] prepends learnable preix vectors �� , �� to � and � of the multi-head attention
at each layer of the Transformer, which can be formalized as follows:

Head = Attn(�,���(�� , �),���(��, � ))

where Con means concatenation.
In this paper, we combine the advantages of continuous prompts with discrete prompts and propose an

instance-aware prompt learning method that learns a unique prompt for each instance. Next, we detail our
proposed IPL mdoel.

2.2 Instance-aware Prompt Learning

We denote� = {�1,�2, · · ·,��} ∈ R
�×� as the input in each layer of the Transformer, where� is the length of input

� and � is the the dimension of the embedding space. Following the Preix tuning [Li and Liang 2021], we use a
reparameterization encoder such as an MLP to generate learnable preix vectors � = {�1,�2, · · ·,��} ∈ R�×� ,
where� is the length of preix vectors � . As shown in Figure 3(b), we project the input � and the preix vectors
� to a lower-dimensional space using the projection matrix �� ,�� ∈ R�×�� and �� ,�� ∈ R�×�� , where �� is the
dimension of the projection space, leading to the form:

��
= ���

� �
= ���

(1)

and

��
= ���

��
= ���

(2)

where �� ,� � ∈ R�×�� and �� , �� ∈ R�×��

We suppose that each learnable preix vector has a diferent contribution to diferent instances and irstly

we learn the contribution scores by calculating the relevance score between matrix ��
= {��

1
,��

2
, · · ·,��

�} and

��
= {��

1
,��

2
, · · ·,���}, �

�
= {��

1
,��

2
, · · ·,��

�} and � �
= {��

1
,��

2
, · · ·,���}. After getting the relevance score, we
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���

Attention

…… ℎ ℎℎ

Look-up module

��∗ ��∗ K��∗

Add & Layer Norm

FFN

Add & Layer Norm

Multi-Head

× L

Tuned

Frozen

(b) Our method: IPL

�� �: �

�� �: �

�� �: ��� �: �

V��∗

Add & Layer Norm

FFN

Add & Layer Norm

���
K

Attention

…ℎ ℎℎ

K�� ��

Multi-Head

Tuned

Frozen

× L

(a) Prefix tuning

Fig. 3. Illustration of prefix tuning (Let) and our method: IPL (Right). {�1,�2, · · ·,��} represents the hidden states in each

layer of Transformer. {�1,�2, · · ·,��} represents the tunable prefix vectors. �� ,�� ,�� ,�� are the projection (Proj) matrix.

Blue blocks refer to the trainable parameters and gray blocks refer to the frozen parameters of PLMs.

pass the score to the look-up module.

��� = � (
1

�

�︁

�=1

��
� · (��� )

� ) (3)

��� = � (
1

�

�︁

�=1

��
� · (��� )

� ) (4)

Secondly, in the look-up module, we adopt a method of mean operation and apply a sigmoid function � to
obtain how much does each learnable preix vector contribute to the input � .

�★�

� = ��� · �
�
� (5)

�★�

� = ��� · �
�
� (6)

where ��� and �
�
� are the contribution scores of the j-th preix vector after applying a sigmoid funtion � , and �★�

�

and �★�
� are the j-th weighted representation for the input. After doing such a calculation for all preix vectors,

we get the instance-aware prompt as �★

�
= {�★�

1
,�★�

2
, · · ·,�★�

�} and �★

� = {�★�
1
,�★�

2
, · · ·,�★�

�}.
Thirdly, we concatenate our instance-aware preix vectors with the original key � and value � .

Head = Attn(�,���(�★

�
, �),���(�★

� , � ))
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2.3 Optimization

We optimize the parameters of our proposed IPL model in two ways: parameter-eicient tuning[Houlsby et al.
2019] and vanilla ine-tuning[Delobelle et al. 2020]. For parameter-eicient tuning, we introduce an instance-
aware module within each layer of the Transformer and only optimize the parameters of the instance-aware
module while keeping the parameters of the original model frozen. We also apply our method to the embedding
layer, following the approach of prompt tuning [Lester et al. 2021], and only optimize the parameters of the
instance-aware module. For vanilla ine-tuning, we aim to reduce the number of trainable parameters by only
applying our method to the embedding layer and optimizing all parameters of the instance-aware module and
original pre-trained language model.

Corpus |Train| |Dev| |Test| Task Metrics

SuperGLUE

BoolQ [Clark et al. 2019] 9427 3270 3245 QA acc.

CB [De Marnefe et al. 2019] 250 57 250 NLI acc.

MultiRC [Khashabi et al. 2018] 5100 953 1800 QA �1�
RTE [Bar-Haim et al. 2014] 2500 278 300 NLI acc.

WiC [Pilehvar and Camacho-Collados 2019] 6000 638 1400 WSD acc.

COPA [Roemmele et al. 2011] 400 100 500 QA acc.

WSC [Levesque et al. 2012] 554 104 146 coref. acc.

ReCoRD [Zhang et al. 2018] 101k 10k 10k QA F1

FewGLUE

BoolQ [Clark et al. 2019] 32 3270 3245 QA acc.

CB [De Marnefe et al. 2019] 32 57 250 NLI acc.

MultiRC [Khashabi et al. 2018] 32 953 1800 QA �1�
RTE [Bar-Haim et al. 2014] 32 278 300 NLI acc.

WiC [Pilehvar and Camacho-Collados 2019] 32 638 1400 WSD acc.

COPA [Roemmele et al. 2011] 32 100 500 QA acc.

WSC [Levesque et al. 2012] 32 104 146 coref. acc.

ReCoRD [Zhang et al. 2018] 32 10k 10k QA F1

Summarization

SAMSum [Gliwa et al. 2019] 14733 818 819 Dialog Summarization Rouge-L

DialogSum [Chen et al. 2021] 12473 501 500 Dialog Summarization Rouge-L

Table 1. The NLU and NLG datasets evaluated in our work. We report the accuracy or F1 score for each dataset.

3 EXPERIMENTS

3.1 Experimental Setings

Datasets: We conduct extensive experiments on several downstream tasks, including NLU and NLG tasks, using
various datasets. Speciically, we evaluate our method on the following datasets: (1) SuperGLUE2 [Wang et al.
2019]: A benchmark containing eight NLU tasks. (2) SAMsum [Gliwa et al. 2019] and Dialogsum [Chen et al.
2021]: Two English dialogue summarization tasks where models predict a short summary given a dialogue. (3)

2https://supergluebenchmark.com/

ACM Trans. Asian Low-Resour. Lang. Inf. Process.
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Corpus Epoch Batch size Learning rate Prompt length Weight Decay

Fully-supervised

BoolQ 40 32 2e-4 20 0.1

CB 40 8 5e-4 16 0.1

MultiRC 30 32 3e-4 20 0.1

RTE 40 32 2e-4 16 0.1

WiC 40 32 3e-4 25 0.1

COPA 40 8 3e-4 30 0.1

WSC 40 32 1e-3 16 0.1

ReCoRD 20 32 3e-4 16 0.1

SAMSum 15 32 5e-5 20 0.1

DialogSum 15 32 4e-5 20 0.1

Few-shot

BoolQ 30 8 3e-5 16 0.1

CB 30 8 3e-5 16 0.1

MultiRC 30 8 2e-5 10 0.1

RTE 30 4 3e-5 16 0.1

WiC 30 4 3e-5 16 0.1

COPA 30 16 1e-5 16 0.1

WSC 30 8 3e-5 16 0.1

ReCoRD 30 8 2e-5 10 0.1

Table 2. Hyperparameter setings for our method IPL in diferent models and diferent tasks.

FewGLUE3 [Schick and Schütze 2021b]: A low-resource task that contains only 32 labeled examples per task for
training from the SuperGLUE dataset. Table 1 shows the detailed information for the NLU and NLG datasets used
in our work.
Architectures: In NLU tasks, we use RoBERTa-large [Delobelle et al. 2020] as the base PLMs for SuperGLUE in
fully-supervised learning. For FewGLUE, which involves few-shot learning, we use ALBERT-xxlarge-v2 [Lan
et al. 2020] as the base PLMs, as it was also used in other baselines for few-shot learning. For summarization, we
use GPT2-large [Radford et al. 2019] as the base PLMs.
Evaluation and Hyperparameters: For SuperGLUE, we report accuracy and F1-score metrics. The model is
trained for 40 epochs with a default setting, using RoBERTa-large [Delobelle et al. 2020] as the underlying PLMs,
a learning rate of 3e-4, a batch size of 32, and a prompt length of 16. For FewGLUE, considering the limited
labeled examples, we do not freeze the parameters of PLMs and use ALBERT-xxlarge-v2 [Lan et al. 2020] as the
underlying PLMs. The model is trained for 20 epochs with a learning rate of 1e-5, a batch size of 8, and a prompt
length of 16. For the summarization tasks SAMsum and Dialogsum, we report ROUGE-1, ROUGE-2, and ROUGE-L
[Lin 2004] metrics. The model is trained for 10 epochs with GPT2-large [Radford et al. 2019] as the underlying
PLMs, a learning rate of 4e-5, a batch size of 32, and a prompt length of 20. The few-shot learning models are
trained on Tesla V100, and the SuperGLUE and summarization models are trained on NVIDIA DGX-A100. In
Table 2, we provide detailed hyperparameters used to train the models in our experiments.

3https://github.com/timoschick/fewglue
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Method #Params
BoolQ

Acc.

CB

Acc.

MultiRC

F1a

RTE

Acc.

WiC

Acc.

COPA

Acc.

WSC

Acc.

ReCoRD

F1

Fully ine tuning [Schick and Schütze 2021b] 100% 85.5 99.1 83.4 87.1 70.9 87.0 88.5 91.9

Prompt tuning [Lester et al. 2021]† 0.01% 62.3 71.4 59.9 58.8 56.9 63.0 64.4 90.6

Preix tuning [Li and Liang 2021] 2% 84.8 98.7 81.3 86.7 70.0 86.0 86.5 91.4

IPL (Prompt tuning) 0.02% 72.2 75.0 60.0 63.9 57.4 73.0 66.4 91.3

IPL (Preix tuning) 1.5% 85.1 99.1 81.9 87.4 71.6 87.0 87.5 92.1

Table 3. Results on SuperGLUE validation set with RoBERTa-large. IPL (Prompt tuning) means the implementation of our

method in the embedding layer. IPL (Prefix tuning) means the implementation of our method in each layer of the Transformer.

† indicates the results reported in [Liu et al. 2021a]. We report the average tunable parameters for SuperGLUE tasks.

Method #Params SAMSum DialogSum

R_1 R_2 R_L R_1 R_2 R_L R_1 R_2 R_L R_1 R_2 R_L

Fully ine-tuning [Schick and Schütze 2021b] 100% 47.2 22.2 42.8 43.4 18.7 39.0 41.8 16.4 36.7 43.0 17.7 37.8

Prompt tuning [Lester et al. 2021] 0.01% 10.4 3.9 9.5 11.9 2.5 10.8 11.7 2.2 10.3 12.0 2.5 10.6

Preix tuning [Li and Liang 2021] 3% 45.8 21 41.2 40.7 16.2 36.6 39.9 14.6 35.0 40.5 16.0 35.5

IPL (Prompt tuning) 0.02% 12.3 4.7 11,4 12.9 2.7 11.7 12.6 2.3 11.0 12.8 2.7 11.3

IPL (Preix tuning) 3.6% 46.6 21.2 42.2 41.2 16.7 37.2 40.1 14.8 35.2 41.0 16.3 36.1

Table 4. Results on SAMSum [Gliwa et al. 2019] and DialogSum [Chen et al. 2021] test set with GPT2-large. IPL (Prompt

tuning) means the implementation of our method in the embedding layer. IPL (Prefix tuning) means the implementation of

our method in each layer of the Transformer. R_1, R_2, and R_L refer to the ROUGE-1, ROUGE-2, and ROUGE-L respectively.

We report the average tunable parameters for two dialogue summarization datasets. The bold font means the best in

parameter-eficient tuning.

3.2 Experiments on NLU and NLG Tasks

The IPL implementation for NLU and NLG tasks is based on PET4 for NLU and HuggingFace [Wolf et al. 2020]
for NLG. The experimental results include NLU and NLG task results.
Table 3 presents the performance of IPL on RoBERTa-large. We implement the method of preix tuning on

NLU tasks as P-tuning v2 [Liu et al. 2021a] does. The P-tuning v2 uses a randomly-initialized classiication head
on top of the tokens as in BERT [Devlin et al. 2019]. Diferent from P-tuning v2, our implementation uses the
verbalizer with LM head as in PET[Schick and Schütze 2021a]. The results show that IPL with few parameters
tuned matches the performance of fully ine-tuning in all tasks on SuperGLUE. Even in textual entailment task CB
& RTE, co-reference resolution task WiC, causal reasoning task COPA, and reading comprehension task ReCoRD,
IPL is equal to or better than fully ine-tuning. Compared to preix tuning, IPL can lead to better results in all the
tasks on SuperGLUE. We also implement our method in the embedding layer as in prompt tuning [Lester et al.
2021; Liu et al. 2021b], and the results in Table 3 demonstrate that our method can improve the performance of
pre-trained language models.

4https://github.com/timoschick/pet
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Method
BoolQ

Acc.

CB

Acc./F1

MultiRC

F1a/EM

RTE

Acc.

WiC

Acc.

BoolQ

Acc.

CB

Acc./F1

MultiRC

F1a/EM

RTE

Acc.

WiC

Acc.

GPT2-base GPT2-large

PET 74.6 94.1/95.6 70.4/22.9 67.1 65.7 80.4 92.9/94.8 75.8/32.4 78.7 70.2

PT (Fully ine-tuning) 74.2 92.9/94.7 69.8/21.2 67.0 64.2 79.7 96.4/97.4 75.8/34.1 75.5 69.1

IPL (Fully ine-tuning) 74.9 94.6/96.0 70.5/22.4 69.7 66.7 80.8 98.2/98.7 76.0/33.3 80.1 69.6

Table 5. Fully-supervised learning on SuperGLUE validation set with unidirectional pre-trained language models. PET means

PET fine-tuning with a single patern, and PT refers to prompt-tuning. For a fair comparison, we use the same patern for all

models.

Method
BoolQ

Acc.

CB

Acc./F1

MultiRC

F1a/EM

RTE

Acc.

WiC

Acc.

BoolQ

Acc.

CB

Acc./F1

MultiRC

F1a/EM

RTE

Acc.

WiC

Acc.

RoBERTa-base RoBERTa-large

PET 80.0 96.4/95.6 76.1/35.1 82.7 69.3 85.5 98.8/99.1 83.4/51.1 87.1 70.9

PT (Fully ine-tuning) 80.3 96.4/94.8 76.1/33.4 80.1 68.9 85.4 98.8/99.1 83.2/50.8 87.0 72.1

IPL (Fully ine-tuning) 80.6 96.4/95.6 76.2/34.6 82.9 70.9 85.7 99.4/99.6 83.4/50.9 87.5 73.5

Table 6. Fully-supervised learning on SuperGLUE validation set with bidirectional pre-trained language models. PET means

PET fine-tuning with a single patern, and PT refers to prompt tuning. For a fair comparison, we use the same patern for all

the models.

Table 4 presents the performance of IPL on GPT2-large. For the two dialogue summarization tasks, IPL achieves
comparable performance to fully ine-tuning with a smaller number of parameters compared to preix tuning.
Even with ine-tuning only the parameters in the embedding layer, our method outperforms prompt tuning
[Lester et al. 2021] by 0.3 points on ROUGE-2.

3.3 Instance-aware FT vs. FT

We conduct experiments on the SuperGLUE benchmark, speciically on BoolQ, MultiRC, RTE, CB, and WiC tasks,
to explore the performance of the instance-aware method when ine-tuning all parameters in diferent models.
We used both unidirectional PLM GPT-2 and bidirectional PLM RoBERTa as the baseline models and compared
the performance of ine-tuning with PET [Schick and Schütze 2021a], prompt tuning [Lester et al. 2021], and our
method IPL. The experiments were conducted using a default setting of 20 epochs, a learning rate of 2e-5, a batch
size of 32, and a prompt length of 16.
Table 5 and Table 6 present our main results on GPT-2 and RoBERTa, respectively. For unidirectional PLMs

like GPT2-base and GPT2-large, IPL outperforms PET ine-tuning and prompt tuning on all 5 tasks with GPT2-
base and 4 out of 5 tasks on GPT2-large. For bidirectional PLMs like RoBERTa-base and RoBERTa-large, IPL
outperforms all other RoBERTa-based models on all 5 tasks. These results demonstrate that IPL can lead to
signiicant improvements on both GPT-2 and RoBERTa models.
For NLG tasks, we compare IPL on GPT2-base and GPT2-large with two baseline methods: standard ine-

tuning and prompt tuning, where we do not freeze the model parameters as IPL does. We choose the dialog
summarization task: SAMsum and report ROUGE-1, ROUGE-2, and ROUGE-L. The hyperparameters we tune
include the number of epochs, batch size, learning rate, and preix length. We set the batch size as 32, preix
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Method R-1 R-2 R-L R-1 R-2 R-L

GPT2-base GPT2-large

FT 42.6 18.9 38.5 47.2 22.2 42.8

PT (Fully ine-tuning) 46.5 21.4 41.8 49.3 24.5 44.8

IPL (Fully ine-tuning) 46.6 21.7 42.0 49.7 24.8 45.0

Table 7. Results for summarization on SAMSum using GPT-2 models. The FT refers to fine-tuning. PT (Full) refers to prompt

tuning with all parameters tuned. IPL (Full) refers to our method with all parameters tuned.

E2E WebNLG DART

BLUE NIST R_L CIDEr BLUE MET TER ↓ BLUE MET TER ↓ BERT

Seen Unseen All Seen Unseen All Seen Unseen All

GPT2-base

FT 69.55 8.79 71.52 2.49 56.01 26.46 41.70 39.33 25.04 32.46 46.40 81.80 62.63 42.08 35.17 52.58 94.12

PT 69.78 8.81 71.55 2.49 60.55 28.03 45.51 43.25 28.82 36.30 38.03 74.17 54.60 45.27 37.62 49.83 94.76

IPL 69.82 8.82 71.65 2.49 60.93 29.94 46.46 43.27 29.15 36.50 37.76 72.23 53.56 42.98 35.62 48.50 95.43

GPT2-large

FT 69.32 8.76 71.25 2.48 62.11 43.52 53.61 44.56 37.39 41.21 37.06 53.62 44.65 47.16 38.24 47.35 94.43

PT 68.32 8.65 71.04 2.49 64.18 46.04 55.85 45.30 38.62 42.17 34.81 50.92 42.19 48.57 39.04 46.12 94.90

IPL 68.53 8.68 71.2 2.51 64.06 46.12 55.90 45.24 38.64 42.12 35.28 50.55 42.28 48.38 39.15 46.17 95.47

Table 8. The best score is in bold for both GPT2-base and GPT2-large. The FT refers to fine-tuning. PT refers to prompt

tuning. For the metrics, the higher the beter except for TER.

length as 100, and the number of epochs as 10 for both GPT2-base and GPT2-large, in addition to setting the
learning rate as 5e-5 for GPT-base and 5e-6 for GPT-large. As shown in Table 7, the results show IPL performs
better than ine-tuning and prompt tuning on both GPT2-base and GPT2-large models, suggesting it has the
potential to scale to even larger models.

We also choose three table-to-text tasks to analyze the efectiveness of our method. E2E [Novikova et al. 2017],
WebNLG [Gardent et al. 2017], DART [Radev et al. 2021] are three table-to-text generation tasks where models
generate a text given a table. On E2E, we use the oicial evaluation script, which reports BLUE [Papineni et al.
2002], NIST [Belz and Reiter 2006], ROUGE-L [Lin 2004], and CIDEr [Vedantam et al. 2015]. On WebNLG, we
use the oicial evaluation script, which reports BLEU, METEOR [Lavie and Agarwal 2007], and TER [Snover
et al. 2006]. On DART, we use the oicial evaluation script and report BLEU, METEOR, TER, and BERTScore
[Zhang et al. 2020]. The hyperparameters we tune include the number of epochs, batch size, learning rate, and
preix length. We set batch size as 32, preix length as 10, the number of epochs as 10 for both GPT2-base and
GPT2-large, in addition to the learning rate as 5e-5 for GPT-base, 5e-6 for GPT-large.
As shown in Table 8, on GPT2-base, IPL performs better than ine-tuning and prompt tuning on E2E and

WebNLG, while on DART, which is an open domain table-to-text dataset, IPL slightly underperforms prompt
tuning. On GPT2-large, IPL outperforms ine-tuning and can be comparable or better than prompt tuning.
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Method
BoolQ

Acc.

CB

Acc./F1

MultiRC

EM/F1a

RTE

Acc.

WiC

Acc.

COPA

Acc.

WSC

Acc.

ReCoRD

Acc./F1
Avg.

GPT-3 [Brown et al. 2020]† 77.5 82.1/57.2 32.5/74.8 72.9 55.3 92.0 75.0 89.0/90.1 73.2

PET [Schick and Schütze 2021b]† 79.4 85.1/59.4 37.9/77.3 69.8 52.4 95.0 80.1 86.0/86.5 74.1

iPET [Schick and Schütze 2021b]† 80.6 92.9/92.4 33.0/74.0 74.0 52.2 95.0 80.1 86.0/86.5 76.8

ADAPET [Tam et al. 2021]‡ 80.3 89.3/86.8 39.2/80.1 76.5 54.4 89.0 81.7 85.4/92.1 77.3

IPL 79.2 92.9/94.8 38.5/76.8 76.2 64.6 91.0 84.8 83.6/91.1 79.3

Table 9. Few-shot learning (32 examples) on SuperGLUE validation set with ALBERT-xxlarge-v2. † indicates the results

reported in [Schick and Schütze 2021b], and ‡ indicates the results reported in [Tam et al. 2021].

Method
BoolQ

Acc.

CB

Acc./F1

MultiRC

EM/F1a

RTE

Acc.

WiC

Acc.

COPA

Acc.

WSC

Acc.

ReCoRD

Acc./F1
Avg.

GPT-3 [Brown et al. 2020]† 76.4 75.6/52.0 30.5/75.4 69.0 49.4 92.0 80.1 90.2/90.1 71.8

PET [Schick and Schütze 2021b]† 79.1 87.2/60.2 36.4/76.6 67.2 50.7 90.8 88.4 85.4/85.9 74.0

iPET [Schick and Schütze 2021b]† 81.2 88.8/79.9 31.7/74.1 70.8 49.3 90.8 88.4 85.4/85.9 75.4

ADAPET [Tam et al. 2021]‡ 80.0 92.0/82.3 35.7/76.2 75.0 53.5 85.4 85.6 85.5/86.1 76.0

IPL 78.4 92.0/85.9 35.1/75.9 74.9 60.9 85.6 84.9 83.5/84.3 76.6

Table 10. Few-shot learning (32 examples) on SuperGLUE test set with ALBERT-xxlarge-v2. † indicates the results reported

in [Schick and Schütze 2021b], and ‡ indicates the results reported in [Tam et al. 2021]

Additionally, IPL obtains better performance on WebNLG unseen domains suggesting that IPL can generalize to
other domains better.

3.4 Few-shot Learning Results

Considering the limited data in few-shot learning and our desire to introduce fewer parameters, we apply our
method only in the embedding layer and do not freeze the PLMs. For a fair comparison, we choose ALBERT-
xxlarge-v2 [Lan et al. 2020] for experiments and use the same data split as in PET [Schick and Schütze 2021b],
which consists of 32 labeled examples for each task.

Our main results on the validation and test sets on SuperGLUE are shown in Table 9 and Table 10. We compare
against GPT-3, PET/iPET and ADAPET [Tam et al. 2021]. Initially, ADAPET does not use the unlabeled data
and achieves the state-of-the-art in small language models5 on SuperGLUE few-shot learning tasks compared
to PET/iPET which uses the unlabeled data. As for IPL, we train IPL with a single pattern and do not use the
unlabeled data.
Table 9 demonstrates that, on average, IPL outperforms GPT-3 by 6 points and PET’s iterative variant, iPET,

by 2.5 points. Moreover, IPL even outperforms the previous state-of-the-art model ADAPET by 2 points on the
validation set. Speciically, compared to iPET and GPT-3, IPL exhibits improvements in 5 out of 8 tasks and 6 out
of 8 tasks, respectively, highlighting the efectiveness of our method in few-shot natural language understanding

5PaLM Chowdhery et al. [2022] with 540 billion parameters is currently the state-of-the-art model for few-shot learning on SuperGLUE.
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Method Dataset 0 4 8 16 20 30 40

PT (Fully ine-tuning) WiC 55.3 59.5 62.4 62.0 60.5 59.1 58.6

IPL (Fully ine-tuning) WiC 55.3 62.5 63.3 64.6 61.9 60.3 60.0

PT (Fully ine-tuning) WSC 80.1 80.4 81.0 83.6 85.2 80.1 77.6

IPL (Fully ine-tuning) WSC 80.1 80.8 82.1 84.8 86.5 80.8 78.9

PT (Fully ine-tuning) CB 89.3 90.2 89.3 91.0 88.7 88.3 88.4

IPL (Fully ine-tuning) CB 89.3 91.1 89.3 92.9 89.3 89.3 91.1

Table 11. Few-shot learning (32 examples) on validation set of WiC, WSC, and CB with ALBERT-xxlarge-v2. We analyze

the performance of task-specific and instance-aware prompts under diferent prompt lengths (e.g., 0, 4, 8, 16, 20, 30, 40). PT

(Fully fine-tuning) refers to prompt tuning with all parameters tuned. IPL (Fully fine-tuning) refers to our method with all

parameters tuned.

Method 0 5 10 20 50 100 0 5 10 20 50 100

GPT2-base GPT2-large

PT (Fully ine-tuning) 38.5 40.6 41.2 41.4 41.4 41.8 42.8 43.4 44.0 43.8 44.2 44.8

IPL (Fully ine-tuning) 38.5 41.3 41.7 41.8 41.7 42.0 42.8 44.6 44.7 44.5 45.2 45.0

Table 12. Results for summarization on SAMSum with GPT-2 models. We analyze the performance of task-specific and

instance-aware prompts under diferent prompt lengths (e.g., 0, 5, 10, 20, 50, 100). PT (Fully fine-tuning) refers to prompt

tuning with all parameters tuned. IPL (Fully fine-tuning) refers to our method with all parameters tuned.

tasks. Table 10 presents our test set results on SuperGLUE, where IPL outperforms GPT-3 by 4.8 points, PET
by 2.6 points, iPET by 1.2 points, and ADAPET by 0.6 points. Our approach achieves a new state-of-the-art in
small language models for few-shot learning on SuperGLUE, demonstrating its efectiveness in improving the
performance of natural language understanding models in low-resource settings.

4 ANALYSIS

We conduct detailed analyses on IPL. In section 4.1, we study the efect of the prompt length on the performance
of NLU tasks and NLG tasks. In section 4.2, we visualize the attention matrix of similar instances and dissimilar
instances to verify the efectiveness of our approach. In section 4.3, we show the average Euclidean distance
between the prompt and instances for diferent methods and present two case studies.

4.1 Prompt Length

We present a visualization of the relationship between performance and varying prompt lengths, while keeping
other settings ixed, and utilizing diferent prompt methods. For NLU tasks, we conduct experiments on three
tasks from the SuperGLUE benchmark, namely CB, WSC, and WiC. We utilize the ALBERT-xxlarge-v2 model for
these experiments and the results are presented in Table 11. Figure 4(a), 4(b) and 4(c) show that performance
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Fig. 4. In the few-shot seting of SuperGLUE, which includes WiC, WSC, and CB, the performance on the validation set

varies as the prompt length changes. Specifically, the prompt length can take on values of 0, 4, 8, 16, 20, 30, or 40.

increases as the prompt length increases up to a threshold (16 for CB and WiC, 20 for WSC), and then the
performance slightly drops. For NLG tasks, We conduct experiments on the SAMSum dataset with GPT2-base
and GPT2-large, and the obtained results are presented in Table 12. Figure 5(a) and 5(b) illustrate the impact of
prompt length on the performance of NLG models with diferent sizes, evaluated on the SAMSum dataset. The
results indicate that the performance of the models consistently improves until the prompt length reaches 50.
Further increasing the prompt length does not result in signiicant improvements. Furthermore, we observe that
our proposed instance-aware prompt learning method outperforms the task-speciic prompt learning method
across diferent prompt lengths, indicating the efectiveness of our approach.

4.2 Visualization of Instance-aware Prompt

In Table 6, we select similar and dissimilar cases from WSC [Levesque et al. 2012] and analyze them using IPL.
Figure 7 displays the analysis results for IPL on both sets of cases, with the attention matrix between the case
and prompt visualized in the igure. Figure 7(a) and Figure 7(b) show that the attention matrices between similar
cases are similar. This result indicates that IPL can generate comparable prompts for similar cases. In contrast,
when comparing the attention matrices between dissimilar cases (Figure 7(a) and Figure 7(c), or Figure 7(b) and
Figure 7(c)), we observe that the matrices are dissimilar. This inding suggests that IPL can generate distinct
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Fig. 5. The performance on the test set of SAMSum varies as the prompt length changes. Specifically, the prompt length can

take on values of 0, 5, 10, 20, 50, or 100.

Instance 1

{"text": "Billy cried because Toby wouldn't share his toy.", "target": 

{"span2_index": 6, "span1_index": 0, "span1_text": "Billy", "span2_text": 

"his"}, "idx": 50, "label": false}

Instance 2

{"text": "Bill passed the gameboy to John because his turn was over.", "target": 

{"span2_index": 7, "span1_index": 5, "span1_text": "John", "span2_text": 

"his"}, "idx": 202, "label": false}

Instance 3

{"text": "Carol believed that Rebecca regretted that she had stolen the watch.", 

"target": {"span2_index": 6, "span1_index": 3, "span1_text": "Rebecca", 

"span2_text": "she"}, "idx": 57, "label": true}

Fig. 6. The instances are chosen from WSC dataset in SuperGLUE. Red represents similar examples, while green represents

dissimilar ones.

prompts for dissimilar cases. As a result, our approach learns a unique prompt for each instance and can identify
the critical information within that instance.

4.3 Prompt Investigation

We show the average Euclidean distance between the continuous prompt and instances for IPL and Preix tuning,
where the instances are from the validation set of ive tasks on SuperGLUE. As shown in Figure 8, the dynamic
prompts learned by IPL are closer to the instances and can acquire more knowledge from the instances. In Figure
9, we show two case studies. For indistinguishable instances, PET utilizes a ixed discrete prompt and makes a
wrong judgment on the meaning of the word ‘put’ and ‘department’. Preix tuning prepends the ixed continuous
prompt with the two instances also gives wrong answers. In contrast, our method IPL learns a unique prompt for
each instance and contains much information of the instance yielding the correct answer.
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Fig. 7. Atention visualization of diferent instances. (a) and (b) are similar instances, (a) and (c) or (b) and (c) are dissimilar

instances. The X-axis represents the input sequence without prompt, and Y-axis represents the prompt sequence.
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Fig. 8. The average Euclidean distance between the continuous prompt and instances for IPL and Prefix tuning. The instances

are from the validation set of five tasks on SuperGLUE.

5 RELATED WORK

GPT-3 [Brown et al. 2020], which uses the task description and several typical examples as prompt to guide
the generation, indicates the language models are few-shot learners and leads to the waves of prompt learning.
Recently, PET/iPET [Schick and Schütze 2021b] utilizes the manually-designed prompts to reformulate natural
language understanding tasks as cloze-style questions with gradient-based ine-tuning. There are also a lot of
studies that utilize the manually-designed prompt to mine the knowledge from the PLMs [Jiang et al. 2020; Trinh
and Le 2018]. Since manual-designed prompt is time-consuming and the search space is huge, researchers focus
on automatic prompt search [Gao et al. 2021; Shin et al. 2020; Zhong et al. 2021].

However, handcrafted prompts can only relect human perspectives on rationality, leading to a surge in research
into continuous prompt learning methods. Li and Liang [2021] proposes preix tuning, which concatenates
learnable preix vectors at each layer of the Transformer and only optimizes the preix parameters. In contrast,
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Instance 1
"word": "put", "sentence1": "He put all his efforts into this job.", "sentence2": "The teacher put an 

interesting twist to the interpretation of the story."  label:  true .

Instance  2
"word": "department", "sentence1": "His work established a new department of literature.", "sentence2": 

"Baking is not my department."   label:  true .

PET

He put all his efforts into this job, The teacher put an interesting twist to the interpretation of the story. 

Similar sense of  "put" ?  FALSE.

His work established a new department of literature, Baking is not my department. Similar sense of  

"department" ?  FALSE.

Prefix tuning

[� � ⋅⋅⋅ ��] He put all his efforts into this job, The teacher put an interesting twist to the interpretation 

of the story. Similar sense of  "put" ? FALSE.[� � ⋅⋅⋅ ��] His work established a new department of literature, Baking is not my department. Similar 

sense of  "department" ?  FALSE.

IPL

[� ′ � ′ ⋅⋅⋅ ��′] He put all his efforts into this job, The teacher put an interesting twist to the 

interpretation of the story. Similar sense of  "put", ?  TRUE.[�∗ �∗ ⋅⋅⋅ ��∗] His work established a new department of literature, Baking is not my department. 

Similar sense of  "department" ?  TRUE.

Fig. 9. The instances are chosen from WiC dataset in SuperGLUE. The manually-designed paterns are used from PET. The

colored words indicate that our approach is aware of the critical information in the instance through the atention matrix.

prompt tuning [Lester et al. 2021] concatenates learnable prompt only in the embedding layer and optimizes
the prompt parameters in the embedding layer. Although Lester et al. [2021] demonstrate the efectiveness of
light-weight prompt-tuning, the gap with fully parameter ine-tuning still exists especially when the PLM is
small.
There are also a lot of works that interleave the prompt throughout the input layer. Hambardzumyan et al.

[2021] propose WARP, initializing the prompt parameters either with word embeddings of [MASK] or similar
to the vectors from the word embedding layer. Their work is based on a series of masked language models
[Delobelle et al. 2020; Lan et al. 2020] and uses a learnable output layer to project the mask to class logits, which
restricts the model and only produces a single output. Liu et al. [2021b] propose P-tuning and use the patterns
based on human design and replace unimportant words with continuous prompts in the embedding layer. When
optimizing the model, P-tuning jointly updates both the prompt and model parameters.
However, the above usage of the discrete and continuous prompts assumes that the prompt is ixed for a

speciic task and all samples in the task share the same prompt. Diferent from the previous method, our method
IPL takes each learnable prompt token as a query and calculates its contribution to each instance through the
look-up module, and then learns a unique prompt for each instance.

Very recently, several contemporaneous works present other instance-dependent prompt approaches. Gu et al.
[2021] propose the dialog prompt and learn continuous prompt embeddings optimized for dialogue contexts. Wu
et al. [2022] study only masked language model on only NLU tasks with two forward passes of the PLMs during
inference time. In contrast, our IPL model is simple and efective for both unidirectional and bidirectional PLMs
on both NLU and NLG tasks without increasing the inference time.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose an instance-aware prompt learning method named IPL, which learns a unique prompt
for each instance. We ind that IPL has the potential to be applied to both unidirectional and bidirectional PLMs
on both language understanding and generation tasks. In the few-shot learning SuperGLUE benchmark, IPL
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outperforms all other methods and obtains the new state-of-the-art using ALBERT-xxlarge-v2. The detailed
analysis demonstrates that our IPL model can indeed dynamically learn appropriate prompts for various instances.

In the future, we would explore how to learn prompts with both instance-aware and task-speciic information
in few-shot learning scenarios.
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