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Abstract

Text image machine translation (TIMT) which
translates source language text images into tar-
get language texts has attracted intensive at-
tention in recent years. Although the end-
to-end TIMT model directly generates target
translation from encoded text image features
with an efficient architecture, it lacks the rec-
ognized source language information resulting
in a decrease in translation performance. In
this paper, we propose a novel Cross-modal
Cross-lingual Interactive Model (CCIM) to in-
corporate source language information by syn-
chronously generating source language and tar-
get language results through an interactive at-
tention mechanism between two language de-
coders. Extensive experimental results have
shown the interactive decoder significantly out-
performs end-to-end TIMT models and has
faster decoding speed with smaller model size
than cascade models. 1

1 Introduction

Text image machine translation (TIMT) aims at
translating text in images from the source language
into the target language, which has been widely
used in various applications such as photo transla-
tion, scene text translation, digital document trans-
lation, and so on. Existing research on TIMT is
mainly divided into two categories of methods:
cascade method and end-to-end method. Cascade
method (Hinami et al., 2021; Shekar et al., 2021;
Afli and Way, 2016; Chen et al., 2015; Du et al.,
2011) takes a text image recognition (TIR) model
for source language text recognition (Baek et al.;
Shi et al., 2017, 2016; Zhang et al., 2021, 2019) and
then translates them into target language texts with
a machine translation (MT) model (Vaswani et al.,
2017; Gehring et al., 2017a,b; Johnson et al., 2017;
Bahdanau et al., 2015; Sutskever et al., 2014; Zhao
et al., 2019, 2020). To explicitly recognize the

∗Corresponding author.
1https://github.com/EriCongMa/CCIM

source language embedded in text images, the cas-
cade model combines TIR models and MT models
for the TIMT task. However, two individual mod-
els in the cascade frame have double parameters
and the decoding speed is slow. Meanwhile, er-
rors in the TIR model are further propagated in the
MT model leading to performance decrease. The
end-to-end method directly translates the source
language text image into target language through
a unified encoder-decoder architecture, which is
more parameter-efficient than cascade models with
faster decoding speed (Ma et al., 2022; Su et al.,
2021; Mansimov et al., 2020; Chen et al., 2020;
Ma et al., 2023a,b,c).

However, the performance of end-to-end mod-
els is limited because the translation process lacks
explicit source language guidance from recogni-
tion texts. An intuitive solution is to incorporate
the recognition history into the translation decoder
to offer more efficient guidance. Recently, multi-
source interaction has been studied to incorporate
effective information into target model (Lu et al.,
2022; Xu et al., 2021; He et al., 2021; Liu et al.,
2020; Zhou et al., 2019a,b; Wang et al., 2019; Zoph
and Knight, 2016). Although multi-source inter-
action is vital to enhance the encoding capacity of
TIMT model through attending recognition infor-
mation explicitly, it has not been explored yet.

To address the above issues, we propose a
novel Cross-modal Cross-lingual Interactive Model
(CCIM) for TIMT, which effectively incorporates
source language recognition information into the
TIMT decoder through interactive attention. The
interactive decoder has two decoding modules, one
for source language and the other one for target
language generation. A cross-lingual interactive at-
tention mechanism is introduced to bridge the two
language decoders. When generating translation re-
sults, the target language decoder not only receives
the hidden states from the encoder and previous
decoded translation history but also attends to the
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Figure 1: (a) illustrates the proposed cross-modal cross-lingual interactive model (CCIM). (b) illustrates the weighted
cross-lingual interactive attention module. (c) illustrates the hierarchical cross-lingual interactive attention module.

decoded recognition history. Our contributions are
summarized as follows:

• We propose a novel cross-modal cross-lingual
interactive model (CCIM) for the TIMT task,
which effectively enhances the translation de-
coder by incorporating recognition features.

• Weighted and hierarchical interactive decod-
ing strategies have been studied to validate the
effectiveness of interactive generation.

• Experimental results on three evaluation
datasets have revealed the CCIM improves
the translation quality of end-to-end TIMT
models and outperforms cascade models with
fewer parameters and faster decoding speed.

2 Methodology

2.1 Cross-modal Cross-lingual Interactive
Model

The proposed CCIM model consists of an image
encoder and an interactive decoder. As shown in
Figure 1 (a), the image encoder first extracts image
features given the source language text image, then
two decoders are utilized for text image recognition
and translation synchronously.

For image encoding, a convolutional neural net-
work is utilized to extract image representation
through multi-layer convolution and pooling op-
erations (He et al., 2016). While for multi-head
attention (MHA), the model collects information
from different positions to update the hidden state
of the current position (Vaswani et al., 2017):

MHA(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QW i
Q,KW i

K , V W i
V )

(1)

where W i
Q,W

i
K and W i

V represent query, key, and
value projection matrices for head i, respectively.
WO denotes the output projection matrix.

Self-attention (SA) The interactive decoder first
calculates self-attention hidden states for both
source language X and target language Y given
the same query, key, and value:

HSA
X = MHA(X,X,X)

HSA
Y = MHA(Y, Y, Y )

(2)

Then, cross-lingual interactive-attention (IA)
hidden states are calculated through two language
decoders. Two types of IA mechanisms are utilized
to recognize and translate synchronously:

Weighted Interactive Attention (WIA) As
shown in Figure 1 (b), the self-attention and inter-
active attention are calculated separately and then
weighted summation:

HWIA
X = HSA

X + λ× MHA(X,Y, Y )

HWIA
Y = HSA

Y + λ× MHA(Y,X,X)
(3)

where the query of WIA is from the corresponding
language decoding history. Key and value are from
the other language history.

Hierarchical Interactive Attention (HIA) To
fuse self- and interactive-attention together, a hi-
erarchical calculation mechanism is introduced to



Synthetic TIMT Subtitle TIMT Street-view TIMT MT Dataset TIR Dataset
#Train #Valid #Test #Test #Test #Train #Train

Zh⇒En 1,000,000 2,000 2,502 1,040 1,198 5,984,287 1,000,000
En⇒Zh 1,000,000 2,000 2,502 1,040 - 5,984,287 1,000,000
En⇒De 1,000,000 2,000 2,000 - - 20,895,771 1,000,000

Table 1: Statistics of text image machine translation (TIMT), machine translation (MT), and text line image
recognition (TIR) datasets.

obtain interactive information through serial com-
puting as shown in Figure 1 (c):

HHIA
X = MHA(HSA

X , HSA
Y , HSA

Y )

HHIA
Y = MHA(HSA

Y , HSA
X , HSA

X )
(4)

where the query is from the inner-lingual self-
attention results, while the key and value are from
the other language self-attention features.

Encoder-Decoder Cross-Attention (CA) Cross-
lingual interactive-attention hidden states are fed
into the encoder-decoder cross-attention mecha-
nism to further incorporate encoder features into
the decoder as in (Vaswani et al., 2017).

HCA
X = MHA(H IA

X , HI , HI)

HCA
Y = MHA(H IA

Y , HI , HI)
(5)

where HI represents the hidden states from the
image encoder. H IA

X , H IA
Y can be WIA or HIA for

source and target languages. HCA
X , HCA

Y denote the
output of the encoder-decoder cross-attention mod-
ule for source and target language, respectively.

The hidden states from the encoder-decoder
cross-attention mechanism are then further encoded
by the feedforward layer to obtain the interactive
decoder layer outputs. Notes that the residual con-
nections (He et al., 2016) and layer normaliza-
tion (Ba et al., 2016) in standard transformer de-
coder are also utilized after self-attention, interac-
tive attention, encoder-decoder cross attention and
feedforward modules in interactive decoder (Zhao
et al., 2023), which are not drawn in Figure 1 for
simplification.

2.2 Loss Functions for Optimization
Since the interactive decoder has two decoders for
the source language and target language respec-
tively, TIR and TIMT tasks are optimized syn-
chronously by multi-task learning. The training
dataset contains triple paired samples as D =

{Ii, Xi, Y i}|D|
i , where Ii is the i-th source lan-

guage text image, Xi is the i-th source language
texts and Y i is the corresponding translated target

language texts. The model is updated by optimiz-
ing both TIR and TIMT loss functions:

L = LTIR + LTIMT

LTIR = −
|D|∑
i

M∑
j

logP (xi
j |Ii, xi

<j , y
i
<j)

LTIMT = −
|D|∑
i

N∑
j

logP (yi
j |Ii, xi

<j , y
i
<j)

(6)

where x<j and y<j denote the recognition and
translation history. M and N represent the token
length of the source language and target language.
Note that the interactive decoder has three atten-
tion modules (self-attention, interactive attention
from the other task, and encoder-decoder attention),
the decoder generates tokens given the condition
of both text image, recognition history, and trans-
lation history. Thus the interactive decoder has
the potential to generate more accurate translation
results.

2.3 Training and Inference
For each decoding step during training, the teacher-
forcing decoding strategy is utilized to train the
parameters in the decoder in a parallel computing
way and each position in the decoder can attend
to all positions in the decoder up to and includ-
ing that position through the attention mask. Dur-
ing inference, the decoder generates both source
and target language tokens by tokens in an auto-
regressive way. For each step, the two sub-branches
of the interactive decoder can attend encoder fea-
tures, recognition history features, and translation
history features, and predict both source and target
language at the current step.

3 Experiments and Results

3.1 Datasets
The experiments have been conducted on a public
TIMT corpus released by (Ma et al., 2022). The
training set contains one million triple-paired sam-
ples of source language images, source language



Architecture
Synthetic Subtitle Street

En⇒Zh En⇒De Zh⇒En En⇒Zh Zh⇒En Zh⇒En
CLTIR (Chen et al., 2020) 18.02 15.55 10.74 16.47 9.04 0.43

+TIR 19.44 16.31 13.52 17.96 11.25 1.74
RTNet (Su et al., 2021) 18.91 15.82 12.54 17.63 10.63 1.07

+TIR 19.63 16.78 14.01 18.82 11.50 1.93
MTETIMT(Ma et al., 2022) 19.25 16.27 13.16 17.73 10.79 1.69

+MT 21.96 18.84 15.62 19.17 12.11 5.84
CCIM 22.21 19.13 15.72 19.48 12.12 5.88

Table 2: Performance of end-to-end models. All end-to-end models are trained with the same TIMT training dataset.
External TIR and MT corpus are also kept the same among different architecture settings.

texts, and target language translation pairs for each
translation direction. The source language text im-
ages in the training dataset are synthesized by using
bilingual text sentences. To validate the general-
ization of models, one synthetic test set and two
real-word (subtitle and street-view) test sets are uti-
lized to evaluate the translation performance. The
statistics of the dataset are shown in Table 1.

3.2 Experimental Settings
Image encoder in CCIM utilizes the same configu-
ration in (Ma et al., 2022). The source language
and target language decoder are 6-layer transformer
decoder with 512-dimensional hidden sizes as in
(Vaswani et al., 2017; Zhao et al., 2023). The max-
imum sentence length for English, German, and
Chinese are set to 80, 80, and 40 respectively. The
preprocessed image height is set to 32 and the chan-
nel is 3. To align the length of the image feature
and text feature, preprocessed image width is re-
sized to 320, 320, and 160. The batch size is set to
64, and the training step is 300,000. All models are
initialized with Xavier initiation method (Glorot
and Bengio, 2010) and optimized with Adam opti-
mizer (Kingma and Ba, 2015) on a single NVIDIA
V100 GPU. Sacre-BLEU2 (Papineni et al., 2002)
is utilized for evaluation metric.

3.3 Baseline Models
• CLTIR model is a vanilla multi-task learning

based TIMT model with auxiliary TIR task
training (Chen et al., 2020).

• RTNet bridges the TIR encoder and MT de-
coder through a feature transformer, which is
also trained with TIR task (Su et al., 2021).

• MTETIMT is a machine translation enhanced
TIMT model, which is trained with both aux-
iliary TIR and MT tasks (Ma et al., 2022).

2https://github.com/mjpost/sacrebleu

Architecture BLEU↑ Param.↓ Speed↑
Cascade 20.46 195M 3.07
Our work: CCIM 22.21 147M 5.04

Table 3: Comparison of cascade and end-to-end CCIM
models. The unit for parameters is million (×106),
while the unit for speed is sentence per second.

3.4 Comparison with Different End-to-End
TIMT Models

Table 2 shows the main results on three evaluation
domains. As shown in Table 1, CCIM outperforms
the existing best multi-task based MTETIT by 0.21
BLEU scores on average. Meanwhile, CCIM im-
proves the translation performance on real-world
domains by 0.12 BLEU scores on average, indi-
cating the good generalization of our proposed
method. Furthermore, CCIM can generate source
language and target language synchronously, which
can meet the requirement of both recognition and
translation tasks in practical applications.

3.5 Model Size and Decoding Speed

The Cascade model deploys TIR and MT mod-
els, leading to parameter redundancy and decoding
delay. With an end-to-end architecture, CCIM out-
performs the cascade model with fewer parameters
and faster decoding speed as shown in Table 3.
Specifically, CCIM decreases around 24.62% pa-
rameters and achieves 1.64x acceleration compared
with the cascade model. Meanwhile, CCIM sig-
nificantly outperforms the cascade model by 1.75
BLEU scores, which effectively alleviates the error
propagation problem in the cascade model.

3.6 Comparison of Different Interactive
Attention Types

To validate the effectiveness of interactive atten-
tion, an ablation study of replacing key and value



Interactive Attention Type BLEU
Weighted Interactive Attention (Rand) 8.07
Hierarchical Interactive Attention (Rand) 11.23
Weighted Interactive Attention (WIA) 22.94
Hierarchical Interactive Attention (HIA) 24.18

Table 4: Comparison of Various Interactive Attention
Types on English-to-Chinese validation set.

Recognition Ground Truth
(Pinyin)

我们 需要 再次 排查 流程
(women xuyao zaici paicha liucheng)

End-to-end TIT We need to check the process
Multi-task We need to check the process
CCIM We need to double-check the process
Translation Ground Truth We need to double check the process

Figure 2: Case study of end-to-end TIMT models.

in interactive attention with random samples noise
vector has been implemented. Experimental re-
sults in Table 4 show that random noise replaced
interactive attention generates a poor translation,
especially for weighted interactive attention. We
attribute that weighted interactive attention incor-
porates noise signals through weighted summation,
which severely disturbs the information flow. Fur-
thermore, hierarchical interactive attention outper-
forms weighted interactive attention, which reveals
that flexible calculation of hierarchical architecture
is better than vanilla summation operation.

3.7 Case Study of CCIM Model
Fig. 2 shows an example of TIMT generated by
end-to-end and CCIM models. Although the end-
to-end model translates the general meaning of the
sentence, it ignores the meaning of ’double-check’
in the source language text image. Since there
is no interaction during decoding, the multi-task
based model also ignores this meaning. CCIM suc-
cessfully translated this word through interactive
attention with the source language decoder, indi-
cating CCIM can effectively alleviate the problem
of lacking source language information in vanilla
end-to-end TIMT models.

3.8 Wait-k Strategy for CCIM
The wait-k strategy is commonly employed in
speech translation, aiming at generating better
translation given more recognition history. To vali-
date the wait-k strategy in the TIMT task, we also
conducted corresponding experiments as shown in
Table 5. From the experimental result, the wait-k

Wait-k WIA HIA
Wait-0 22.94 24.18
Wait-1 22.99 24.32
Wait-2 23.07 24.75
Wait-3 23.64 24.91
Wait-4 23.75 25.49
Wait-5 23.36 25.18

Table 5: The performance of wait-k strategy for CCIM
on English-to-Chinese Validation Set.

strategy makes the recognition task decode first,
enabling the translation task to access more source
language information for improved translation qual-
ity. While the wait-k strategy enhances translation
quality, it does introduce some latency increase.
The CCIM model achieves the best translation per-
formance when k = 4 in our experiments.

4 Conclusion

This paper proposes a novel interactive decoder
based end-to-end TIMT model, which explicitly in-
corporates recognized hidden states into the trans-
lation process. Through the interactive attention
mechanism, recognition and translation results are
generated synchronously and mutually enhanced.
By making full use of the source language recogni-
tion information, CCIM outperforms existing end-
to-end and multi-task based TIMT models on both
synthetic and real-world evaluation sets. Further-
more, with the end-to-end architecture, CCIM has
fewer parameters and faster decoding speed than
cascade models. Ablation study of different inter-
active attention types shows hierarchical interac-
tive attention has stronger interactive ability across
recognition and translation tasks. In the future, we
will explore more interactive methods for end-to-
end text image machine translation.
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6 Limitations

Our method is now designed for text line images,
which need preprocessing of text detection in im-
ages. In the future, we will consider optimizing the
text detection and translation in images jointly to
increase the scalability of our work.
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