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ABSTRACT
Commonsense understanding is a long-term goal of natural language
processing yet to be resolved. One standard testbed for common-
sense understanding is Story Cloze Test (SCT) [22], In SCT, given a
4-sentences story, we are expected to select the proper ending out
of two proposed candidates. The training set in SCT only contains
unlabeled stories, previous works usually adopt the small labeled
development data for training, which ignored the sufficient train-
ing data and, essentially, not reveal the commonsense reasoning
procedure. In this paper, we propose an unsupervised sequence-to-
sequence method for story reading comprehension, we only adopt
the unlabeled story and directly model the context-target inference
probability. We propose a loss-reweight training strategy for the
seq-to-seq model to dynamically tuning the training process. Experi-
mental results demonstrate the advantage of the proposed model and
it achieves the comparable results with supervised methods on SCT.
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1 INTRODUCTION
Machine comprehension (MC) of text is one of the ultimate goals in
natural language processing (NLP) and artificial intelligence. How-
ever, teaching a machine to comprehend text is extremely challeng-
ing since comprehension involves many aspects of knowledge, such
as information retrieval, fact reasoning, commonsense inference, etc.
[36]. In recent years, many datasets have been proposed to evaluate
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① Dakota	was	a	senior	in	high	school	with	mediocre	grades.	
② Dakota	filled	out	an	application	to	his	local	college.	
③ He	waited	for	a	letter	of	reply	from	the	college.	
④ One	day	he	went	to	the	mailbox	and	found	a	thin	envelope.	
⑤ He	opened	the	envelope	and	was	disappointed	he	hadn't	
been	accepted.

① Bob	had	a	young	puppy.
② The	puppy	loved	to	play	catch	with	Bob.
③ Of	course,	the	puppy	grew	into	a	dog.
④ The	dog	grew	old	and	could	no	longer	play	catch.

1. Bob	was	very	happy	about	this.
2. This	made	Bob	sad.

Context

Candidate	Target

s

Figure 1: An example of SCT, the upper half is a training in-
stance and the lower half is a test instance.

the comprehension ability of a system, such as MCTest [29], SQuAD
[28], MARCO [23], or cloze style datasets such as CNN/Daily Mail
[13], Clicr [37] etc. However, most of these datasets are focused on
factoid questions, and the reasoning abilities required to answer these
questions are limited to shallow linguistic features, which makes
it easy for even simple keyword matching algorithms to achieve
high accuracy [35, 36]. The deeper inference ability of a system has
not been thoroughly evaluated. Story Cloze Test (SCT) [22], on the
contrary, is a story cloze dataset that requires deeper understanding
of the document. This dataset contains many stories, each story is
made up of 5 highly recapitulative sentences. The story in SCT cap-
tures a rich set of causal and temporal relations between daily events.
During the test period, given a four sentences story plot (context),
we must predict from two candidates that which is more likely to
be inferred from the context. SCT requires reasoning with implicit
commonsense knowledge, rather than matching explicit information
in the text. An example of SCT is shown in Figure 1.

A main characteristic of SCT is that the training data is unlabeled
which only contains the positive examples (i.e., the 5th sentence), so
the traditional discriminative models are hard to apply. Nonetheless,
the development set is similar to the test set that contains the human-
crafted negative sentences, so previous works on this task usually
adopt the small labeled development set for training [2, 6, 17, 20,
27, 31, 33]. However, only utilizing the development set may not
reveal the real difficulty of the commonsense reasoning in SCT.
For example, Schwartz et al. [31] find that when trained on the
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development set, only using the target sentence (without the context)
for classification could yield a very good result, which means the
development set (and test set) is biased towards some linguistic
features in the target sentence, the inference procedure from the
context to the target has not been throughout exploited.

In this paper, rather than employing the superficial linguistic fea-
tures adopted by previous methods, we focus on the commonsense
inference procedure between the context and the target. So instead of
using the biased development set we directly use the unlabeled sto-
ries for training. Concretely, we use a sequence-to-sequence model
to transform the context to the target, we model the context by an
encoder and then generate the target sentence word by word via a
decoder. The loss is the cross-entropy between the generated word
and ground truth target word. The encoder is a hierarchical model
consists of two LSTMs to represent the meaning of the context
by word⇒sentence⇒document hierarchy. The decoder is another
LSTM model which is trained to maximize the likelihood of the
target. During inference period, we cast the sentence classification
problem as a conditional probability estimation problem, the predic-
tion is the sentence that has higher decoding likelihood.

Nonetheless, for the seq-to-seq model, the training instances may
result in the optimization-inequality: when the context contains more
sentences, it would be more confident about what will happen in the
next, and the prediction loss of the decoder should be small; when
given only a little (or even no) context information, it would be less
certain about the next sentence, and the corresponding decoder loss
is expected to be high. To take the hardship of each training instance
into account, we propose a novel loss-reweighted method to train the
decoder. For each sentence, we use its encoder hidden representation
to determine its weight in the final loss calculation. In this manner,
the loss weight is tailored to the data itself.

In addition, as the proposed methods are pure unsupervised which
only requires the context-target pairs. The abundant instance in other
text may benefit a lot for our reasoning system. Inspired by the recent
success of utilizing the large unlabeled data for natural language
processing, such as BERT [9], ELMO [25] Skip-thought [16]. We
extend the proposed methods on external large unlabeled data, such
as BookCoprpus and Wikipedia, which serves as the pre-training
step. We found that this pre-training is very useful for our application
and achieves a significant improvement in the final result.

We conduct several experiments on SCT. Our hierarchical encoder-
decoder obtains nearly 10 percent absolute improvements over other
unsupervised methods. And when enhanced with abundant exter-
nal data, our model even achieves comparable results with most
supervised counterparts. The results and quality analysis reveal that:

• The proposed unsupervised models are more suitable to the
context-inference problem compared with the discriminative
model when it is hard to get the negative sample.
• When pre-trained on the large unlabeled dataset, we could

obtain significant improvement, which means the abundant
unlabeled data contains a lot of information that benefit our
commonsense inference application.
• The quality of the generated sentence relies on the amount

of information in the context, so devising a strategy (loss-
reweight in this paper) to take each sentence weight into
account is important to train the decoder.

2 METHODOLOGY
Each story in SCT contains five consecutive sentencesD = (s1, ..., s5)
where each sentence si consists of a sequence words: si = (wi1, ...,win ).
During inference period, given four context sentencesC = (s1, ..., s4)
we should predict which candidate sentence, i.e. t1 or t2, is more
likely to be inferred by C.

2.1 Hierarchical Encoder Decoder
2.1.1 Encoder. The encoder is a hierarchical model, which con-
sists of a sentence level LSTM encoder to processed the words; and
a document level LSTM to process the sentences.

Sentence level encoder takes the word embedding w as input,
then process the sentences in the context forward and backward with
two separate LSTMs:

−→
ht =

−−−−→
LSTM(

−→
h t−1,wt )

←−
ht =

←−−−−
LSTM(

←−
h t+1,wt )

(1)

we concatenate the forward and backward representation for each
word: ht = [

−→
ht ;
←−
ht ]. Finally, we average each word hidden represen-

tation as the sentence representation: si = 1
ni

∑ni
t=1 hit where ni is

the number of word in ith sentence.
Document level encoder is built upon the sentence level rep-

resentation to derive a global representation of the document. It
processes the sentences with a uni-directional LSTM that takes the
sentence representation si as input:

oi = LSTM(oi−1, si ), ci =
1
i

i∑
j=1

oj (2)

where i ∈ [1, 4]. oi is the document representation and ci is the
document embedding for sentence i that fed into the decoder.

2.1.2 Target Sentence Attentive Decoder. After encoding the
context sentences [s1, ..., si ] with the above two-level LSTM archi-
tecture, we use a decoder to decode the target sentence word by
word. The objective of the decoder is to maximize the log likelihood
of the target sentence:

log P(si+1 |s1:i ) =
ni+1∑
t=1

log P(wt |w1:t−1, s1:i ) (3)

and each word probability could be calculated by:

hdt = LSTMdecoder (ht−1;wt−1)

ĥt = [hdt ; ci ], ht = tanh(Wp · ĥt )

P(wt |w1:t−1, s1:i ) =
exp(h

T
i · wt )∑ |V |

j=1 exp(h
T
i · wj )

(4)

The superscript d stands for ‘decoder’, Wp is a projection matrix to
transform the decoder hidden representation into the word embed-
ding space. |V | is the vocabulary size.

However, decoding the target sentence si+1 merely by the context
vector ci is not an elegant way, because different part of the target
sentence may derived from different context sentences. In this paper,
we embed the well-developed attention mechanism [19] into the
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Figure 2: The whole architecture of our hierarchical encoder-decoder to model the context and target.

decoder: Instead of a fixed context representation ci , we use an
attention-weighted context representation:

α j ∝ oTj hdt , at =
t∑
j
α joj

ĥt = [hdt ; at ]

(5)

α j is the attention score for sentence j respect to the current word t .

2.1.3 Loss Reweighted Training Strategy. During the decoding
period, traditional encoder-decoder architecture takes the summation
of each word loss as the sentence loss, which means each word
takes the equal weight. However, when decoding the several opening
words, we have less information, so the predictions are somewhat
random. On the contrary, after predicting some words, we are con-
fident about what to decode next. In this work, we use the word
hidden representation hdt to determine its loss weight. Concretely,
for a specific sentence si with length ni , the loss is:

β ′i j =wT
s · h

d
i j , j = 1, ...,ni

βi j =
exp β ′i j∑ni

k=1 exp β
′
ik

Li = −

ni∑
j=1

ni · βi j · log P(w j |w1:j−1, s1:i−1)

(6)

ws is the weight vector to calculate βi j -the (normalized) weight for
jth word in final loss summation. When set this weight to constant
1
ni , the model is reduced to traditional sum-loss scheme in Equation
3. In this manner, the loss of each word is not equal or fixed but
tuned by the model i.

Document Level Loss Reweight: In SCT, each story instance
contains 5 ⟨context-target⟩ pairs: {⟨s0:i−1, si ⟩|i ∈ [0, 4]}. We use
each sentence representation oi to determine its loss weight in the
context, thus the loss for each story is:

γ ′i =wT
d · oi

γi =
expγ ′i∑5

k=1 expγ
′
k

L =

5∑
i=1

γi · Li

(7)

wd is the document level loss weight vector. L is the final objective
we try to minimize.

2.1.4 Inference. As the whole architecture is optimized to maxi-
mize the likelihood of the target sentence conditioned on the context,
so the inference could be made by how likely the target is given the
context. We select the target that has a less conditional perplexity:

P(ti |s1:4) = exp
1
ni

ni∑
j=1

log P(w j ) (8)

where P(w j ) is defined in Equation 4. This criterion is similar with
Schwartz et al. [31] who also proposed a language model for this
task, nevertheless, our architecture is hierarchical so we directly
adopt the target sentence perplexity.

2.2 Pre-training
As the whole architecture only takes the unlabeled context-target
pairs as input that it could trivially enhance our model by the large
amount unlabeled data, such as Wikipedia articles or fiction stories.
In this paper, we choose two types of unlabeled text as pre-training
resources. The first one is the BookCorpus stories [41] that contains
2662 unpublished novels from 16 categories such as Mystery Ad-
venture or Science fiction. The second one is the Wikipedia article,
which consists of the detailed description for the item in the world.
This two types of external unlabeled data are complementaries to
each other consists of different aspects of commonsense.

Compared to previous pre-training methods, our methods have
two characteristics. 1) As the inference is made by the context-target
probability in Equation 8, the pre-training and fine-tuning step are
equivalent so there is no need for devising new architecture for the
fine-tuned model, and even obviates the fine-tuned step that we could
directly use the pre-trained model for inference. 2) Previous pre-
training method for NLP mainly focuses on local information, for
example, word embedding is mainly focus on word level information,
and Skip-Thought, Elmo, and Bert is mainly focus on sentence-level
pre-training. However, we focus on document level information
which captures the long-range dependencies between sentences.

To better utilize the abundant training data, in this paper, for
each sentence si in the unlabeled dataset, we treat its preceding n
sentences, i.e. {sj |j ∈ [i −n, i −1]} as the context. We use the contex-
tual n sentences to predict the current sentence via our hierarchical
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System Accuracy
Lin et al. [17] 67.02%

Mihaylov and Frank [20] 72.42%
Schwartz et al. [31] 75.20%

Cai et al. [2] 74.70%
Chaturvedi et al. [6] 77.60%

BOW 73.54%
Embedding 76.45%

CNN 75.38%
Table 1: SCT test results of our proposed supervised models
compared with state-of-the-art models.

encoder-decoder. In this paper, the number of context sentences is
randomly sampled from [1, 20]. The objective for pre-training is to
minimize the negative log likelihood of the target sentences.

3 EXPERIMENT
In the experiment, we first show that adopting the development set in
SCT for training, is not an appropriate setting to evaluate the context
inference ability of a system. Then we compare our model with other
unsupervised architecture, including generative and discriminative
models, and demonstrate the specific advantage of our model.

3.1 Revisiting Supervised Setting
In this setting, similar with previous methods on SCT that achieve
state-of-the-art result, we adopt the development set in SCT, which
contains 1871 labeled story (i.e., each story combined with both
positive and negative target ending sentence), for training. So in
this setting SCT is reduced to a 2-class classification problem. We
proposed three simple methods which are purely based on word
information as baselines:
• BOW: We use bag-of-words as the feature vector for each

target sentence, and each word is weighted by its Tf-IDF. We
use a simple logistic model for classification.
• Embedding: This model is similar with fastText [12]. We use

the average word embedding of each sentence as the feature
vector. Then a linear layer is applied for classification.
• CNN: This model is similar with Embedding, we apply con-

volutional neural networks on the word embedding, which
captures the local information of the input.

It needs to mention that to emphasize the characteristic of the
labeled data in SCT, all of the proposed supervised models are
merely based on the ending sentence, i.e., we did not take the context
information into account. We use 300-d Glove [24] representations
as the word embedding. CNN windows size was set to 3. We compare
these supervised models with five state-of-the-art models on SCT:
• Lin et al. [17] proposed a method based on heterogeneous

knowledge. They adopt sentiment, event relationships, dis-
course relations etc. as features for classification.
• Mihaylov and Frank [20] proposed two models for classifica-

tion: 1) features: it use several similarity score as the feature.
2) neural: it use attention based neural networks to modeling
the sentence.

• Schwartz et al. [31] use several sophisticated features, such
as sentence length, word frequency, word n-grams, character
n-grams etc. as features for classification.
• Chaturvedi et al. [6] proposed model based on sophisticated

features, such as event relations in FrameNet [1], sentiment
trajectory, topical consistency etc.
• Cai et al. [2] proposed a simple neural based attention model

to model the sequence.

The result is shown in Table 1.
We can see from the table that although the proposed supervised

models are relatively simple, they could achieve a similar result
with previous works. Given that these models are merely based on
the ending sentence, and did not take the context four sentences
into account, this reveals the fact that: the right prediction could be
made by only using the ending sentence information 1, without the
need to find clues in the context. So models trained on the labeled
development set may not reveal the story comprehension ability.

On the contrary, in this paper, we proposed an unsupervised
generative model to derive the context-target probability, which
directly modeling the commonsense inference process in a story. In
the next several sections, we only use the unlabeled training data,
where we could not access to the negative ending sentence. And we
evaluate our model in development and test set.

3.2 Common Setup
The SCT training set contains 98167 stories, both dev and test set
contains 1871 stories. For the pre-training Bookstory dataset, we re-
move the target sentences that is too short or too long. For Wikipedia,
we use the 2018-06-01 wikidumps2 and extract only the text pas-
sages and ignore lists, tables, and headers. After preprocessing we
get more than 90 millions <context, target> pairs.

For our hierarchical encoder-decoder model, we set the word
embedding size to 1024, and sentence level LSTM encoder and
document level encoder are 4-layers LSTM. We use the byte pair
encoding (BPE) to fixed the vocabulary size to 35k. Batch size is
set to 256 in the pre-training and 32 in the fine tuning step. We use
vanilla dropout [34] on the word embedding layer and variational
dropout [10] on the LSTM output layer, with a drop probability 0.1.
We use Adadelta [40] with ρ = 0.999 to update the parameter. L1 and
L2 criteria with weight 10−5 are added to regulate the parameter. And
we adopt a 100k warm-up steps and final 100k training steps during
the pre-training period. For all experiments without pre-training, we
halve the encoder size to prevent overfitting.

3.3 Baselines
There are several baseline methods proposed in [22] such as using
word embedding similarity, sentiment tendency prediction, etc. We
compare four of them in this paper: GenSim: choose the candidate
with its average word embedding closer to the context. Narrative
Chains-AP: Implements the standard approach to learning chains
of narrative events based on Chambers and Jurafsky [3] and chooses
the hypothesis whose co-referring entity has the highest average PMI
score with the entity’s chain in the document. Narrative Chains-S:

1which is referred as writing style [31].
2https://dumps.wikimedia.org/enwiki/

https://dumps.wikimedia.org/enwiki/
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Gensim
Narrative-Chains-A

P

Narrative-Chains-S

DSSM
LSTM

LM HLSTM w/o att

HLSTM
HLSTM+LR

HLSTM+LR+PT

Supervised SOTA

Dev 0.545 0.472 0.510 0.604 0.621 0.618 0.642 0.647 0.694 0.775 0.772
Test 0.539 0.478 0.494 0.585 0.612 0.609 0.631 0.660 0.702 0.753 0.765

Table 2: Accuracy of different unsupervised methods in SCT. Our hierarchical LSTM based encoder decoder model is denoted as
HLSTM. w/o att means the model is not equipped with attention mechanism. LR denotes loss reweight, and PT denotes the pre-
training. Supervised SOTA is a lexical matching method trained on development set which achieves the best result [33] in SCT.

The same model as above one but is trained on Story Cloze Test.
Deep Structured Semantic Model (DSSM): This model is trained
to project the context and the fifth sentence into same space [14].

In addition to the above baselines, we also compare our methods
with some other unsupervised model that are generatively based on
encoder-decoder architecture.
• Language Model (LM): is a model similar to [31], which

treats each story as a single sentence and decodes it with an
LSTM. Thus the context information is modeled on-the-fly
by the LSTM.
• LSTM: It has the same decoder architecture with the pro-

posed model, but the encoder is a single LSTM model that
processes the four context sentences as one sequence.

The result is shown in Table 23.
We can see from the table that our proposed hierarchical encoder-

decoder model significantly outperforms other models that trained
with the unlabeled data. For the Gensim methods, as it only takes
the word information into account. However, the inference in SCT is
much more difficult which need the more complex semantic compo-
sition from words. For the two feature engineering methods based on
narrative chains, Mostafazadeh et al. [22] only takes the entity into
account, which is not appropriate given that the ending sentences
may share the same entities.

Besides, we find that the language model (LM) or sentence level
model (LSTM) does not perform comparative result with our hier-
archical model. We conjecture that the SCT is a more complicated
inference task compared with the previous task such as recognizing
textual entailments. The commonsense conveyed by the story sen-
tences is diverse and intricate, so it may not be modeled by simple
sequence model. In this paper, we model the context with a hierar-
chical sequential model, which has better representation capacity
and thus achieves better performance.

To better understanding the advantage, we randomly sample the
predicted ending of these models in Figure 3. We can see that as The
LSTM model did not take the context-architecture into account, its
prediction is just coherent with the 4th sentence in context. In the
language model, it doesn’t discriminate context and target, so during
greedy decoding the generated tokens only present the word-by-word
coherence. The ending sentence generated by our HLSTM model is
most coherent with the context and most similar with the real target
sentence. The advantage of HLSTM also accord with previous works
such as dialogue systems [32], document summarization [5] who
3For the LM, we reimplement the language model introduced in [31], unfortunately we
could not obtain the same result. To fairly compare our model with them we report the
result of our implementation which has a same software settings with other baselines.

� Newly married, Sue liked to cook for 
her husband.

� Unfortunately Sue was a terrible 
cook.

� Bob ate her food anyway and told 
her it was good.

� On their first anniversary Bob gave 
Sue cooking lessons.

<s/> sue begins to cook very well </s>
<s/> sue studies the cooked lessons </s> 
<s/> sue cooked for cooked for cooked for
bob </s>

Context:

Targets:

Prediction:
HLSTM:

LSTM:
LM:

Fake: She never cooked again.
Real: She became a better cook.

Figure 3: Predictions of different models given context.

also show hierarchical models are sometimes excel at representing
the document level information.

3.4 Unsupervised Pre-training
We can see in table 2 that the unsupervised pre-training step im-
proves our model significantly. To make a deeper exploitation of the
unsupervised pre-training we conduct several experiments:

1) Instead of taking a lot of context sentences, we only use one
context sentence to pre-train our model. This is similar with Skip-
though [16] which also uses LSTM encoder to encode the source
sentence and two decoders to predict the previous and following
sentence.

2) We do not fine-tune our model on SCT but directly use the
pre-trained model for inference.

3) We remove either Wikipedia or BookCorpus to evaluate their
contribution during pre-training.

The result of different unsupervised pre-training is shown in Table
3.

We can see that the skip-thought, which only takes one sentence
into account, is not competitive for SCT. The intuition behind Skip-
Thought is to model the sentence-to-sentence inference process, so
it is very suitable to sentence similarity or entailment tasks [16].
However, in SCT, the inference is beyond sentence level so the Skip-
Though could not achieve good result. In addition, it is surprising
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dev test

Skip-Thought 0.603 0.589

w/o fine tune 0.692 0.703

w/o Wikipedia 0.752 0.749

w/o BookCorpus 0.702 0.700

pre-training+fine tuning 0.762 0.759
Table 3: Result of different pre-training strategy. It needs to
mention that our our model (w/ fine tune) is not enhanced with
loss-reweight training.

that the model without fine-tuning could also achieve a very good
result in SCT, which demonstrate the rich semantic information are
well modeled by our encoder-decoder, and the knowledge could
be transformed to SCT. For the two pre-training resources, as the
textual style of Wikipedia is very formal, which is different from
SCT. However, the BookCorpus is narrative stories and more similar
to SCT, so its influence is more significant.

3.5 Our methods vs. Discriminative methods
The proposed unsupervised models try to learn the discriminative
pattern without the negative sample. On the contrary, traditional
models to deal with textual inference tasks mostly build upon a
discriminative architecture [8, 18] in which both positive and neg-
ative samples are present in the data. Thus we compare our model
with these discriminative models. To make the discriminative clas-
sifier available, we proposed three ways to generate the negative
sentences. I: Randomly sample a sentence from the training dataset.
II: Randomly shuffle the positive sentence. III: Randomly generate
a sequence from the word vocabulary. It needs to mention that the
second and third method may generate the ungrammatical sentence.

In this paper, we proposed three types of deep learning based
discriminative models to calculate the score of a <context-target>
pair:

(1) HLSTM-D: we use the HLSTM to get the document repre-
sentation c, and the sentence LSTM encoder to get the target
sentence representation h. We compare the document with
target by their dot value: score = σ (oT · h) and σ is sigmoid
function. We adopt max-margin hinge loss as the training
objective:

L =max{0,M − score+ + score−} (9)

where the score+ and score− are scores for the positive and
negative target. M is a pre-defined margin which is set to 0.15.

(2) AHLSTM-D: [8] is similar with HLSTM-D, except that the
context representation c is not average of each context sen-
tence representation oi but an attentive weighted sum of them.

(3) CGANs: [39] uses a conditional generative adversarial net-
works [11] to generate the negative targets and then apply a
hierarchical discriminator on them.

To fairly compare our model with this discriminative classifiers, we
do not apply the loss-reweight or data-enhancement on our HLSTM
and only use the original stories. The result is shown in Table 4.

Test Dev

Discriminative
HLSTM-D 0.571 0.584

AHLSTM-D 0.599 0.603
CGANs 0.609 0.625

Generative HLSTM 0.694 0.702
Table 4: Result of our proposed models compared with discrimi-
native classifiers. The term ‘generative’ is not accord to the gen-
erative model in machine learning, but a conceptual reference
of models that generate text.
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Figure 4: Average accuracy and hinge margin w.r.t. the number
of fake examples. Histogram is the margin and solid line is the
accuracy.

We can see that although enhanced with attention mechanism, the
discriminative model could not outperform the proposed unsuper-
vised methods. This may be attributed to the fact that the randomly
generated example cannot provide enough discriminative informa-
tion for the classifier. To see this more concrete, we generate more
and more negative sentences to the discriminative classifier, then
given two candidates, we calculate the margin between the larger
score and the smaller one based on Equation 9. The result is shown
in Figure 4.

We can see that the negative sampling methods for the discrimi-
native classifier are ineffective for inference. In the previous works,
when it hard to normalize the probability, such as word embedding
[21] or large vocabulary language modeling [15], they usually adopt
negative sampling or importance sampling to sample words or en-
tities. However, the sentence space is so huge compared to word
space making the randomly sampled negative pattern hard, if not
impossible, to be used for probability normalization, which hinders
the discriminative generalization of the classifier.

3.6 The Improvement by Loss Reweight
An important innovation in this paper is that we propose a loss
reweight strategy for training the encoder-decoder model. In table
2 we show that our model achieves better results when enhanced
with the loss-reweight strategy. We use two criteria to measure this
improvement: I, following traditional machine translation evaluation,
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BLEU-2 BLEU-4 Test Dev

L-sum 0.3883 0.3382 0.635 0.638
L-mean 0.3719 0.3221 0.632 0.634
LR-G 0.4141 0.3335 0.644 0.638
LR-A 0.3699 0.3292 0.659 0.628

w/o SLLR 0.4101 0.3423 0.673 0.668
w/o DLLR 0.4225 0.3512 0.674 0.682

HLSTM+LR 0.4413 0.3921 0.694 0.702
Table 5: The result of different training strategy in terms of the
translation quality and SCT accuracy. We set p to 1.2 for LR-G
and 1

n−1 for LR-A.

we use BLEU score as the metric to measure the similarity degree
between the generated texts and the ground-truth texts. Specifically,
we set n-gram to be 2 (BLEU-2) and 4 (BLEU-4). II, The improve-
ment of downstream accuracy in SCT. We design several types of
comparison experiment:

(1): Ablation experiments: Remove the sentence level loss reweight
(w/o SLLR) or document level loss reweight (w/o DLLR).

(2): Replace the weighted loss with the summation of each word
loss (L-sum).

(3): Replace the weighted loss with the average of each word loss
(L-mean).

(4): The proposed hypothesis is that the loss weight of each word
should correlate to the number of words that have been fed to the
decoder. So we set each word loss in a sentence linear to its position.
Concretely, given a sentence with length n, the loss weight wi for
the ith word is:

(LR-G) Geometric:

wi =
n(p − 1)pi

pn − 1
s .t . p > 1

(10)

which means the loss for ith word is p times larger than the loss for
(i − 1)th.

(LR-A) Arithmetic:

wi = 1 − p(
n − 1 + 2i

2
)

s .t . 0 < p <
2

n − 1

(11)

The result is shown in Table 5.
We can see from the table that when training the decoder with

loss reweight strategy, the performance (both in terms of the gener-
ated sentence quality and inference accuracy) could be improved.
Best results are achieved when we employ the self-determined loss
reweight strategy. In this manner, the loss is self-adjusted during the
different training period and among different training instances. As
the training procedure is tuned by the model itself, so it would be
better adjust the learning process and achieves a better result.

4 RELATED WORK
Machine comprehension is a recently proposed natural language
understanding task which aims at teaching a machine to understand

the text and accomplish question answering or textual inference prob-
lem. Since the MCTest [29] was proposed, many researchers have
been focused on this task. Hermann et al. [13] proposed a large cloze
style CNN/Daily Mail dataset in which the target is to generate the
word in a statement slot given the context. However, this dataset is
derived semi-automatically from the newspaper and the target words
are limited to nouns, which confines the inference ability required to
answer the questions [7]. SQuAD [28], NewsQA [38] and MARCO
[23] are recently released MC datasets. Most of the questions in
these datasets are limited to syntactic variation or lexical variation
[35]. In this paper, we are focused on SCT, which evaluates the
deeper semantic inference ability of a system. The baseline models
proposed in [22] contain not only feature engineering systems but
also deep learning models, nonetheless, the performance is still poor
compared with human. Schwartz et al. [31] proposed some super-
vised methods based on the writing style of the annotator, which
achieves a good result on SCT. Mihaylov and Frank [20] proposed
a lexical matching method on this data, which compares the two
ending candidates by n-gram overlap. Lin et al. [17] proposed to
employing external knowledge, such as event relations, to deal with
SCT. Chaturvedi et al. [6] also proposed a model based on linguistic
features and model them with a hidden coherence model. Cai et al.
[2] proposed a simple neural based attention model with LSTM.
Despite substantial improvement over baselines, these methods are
based on the labeled development data, which did not fully take the
unlabeled training set into account.

Script Learning is a canonical representative of traditional tex-
tual inference methods. It processes the temporally ordered se-
quences of symbolically structured events and tries to predict future
events. Previous methods are non-probabilistic and brittle which
pose serious problems for automated learning. In recent years, there
has been a growing body of research into statistical script learning,
which enables statistical inference of implicit events from the text
[26, 30]. Chambers and Jurafsky [3, 4] describe some simple event
co-occurrence based systems which infer (verb dependency) pairs
related to a particular discourse entity. However, these methods rely
heavily on dependency parser and co-reference tools to transform
the document into event chains. Which brings noise to SCT.

Unsupervised Pre-training Unsupervised pre-training has been
widely adopted in the deep learning era. In computer visions, many
methods first pre-train their models on Imagenet and then fine-tuned
on the task at hand. In NLP community, instead of just optimizing
the models from random initialization, some parameters are initial-
ized by an unsupervised application in a large amount of data. For
example, word2vec [21] or Glove [24] are two representative meth-
ods to initialize the word embedding. However, they only take the
word information into account. ELMO [25] and GPT [27] try to ini-
tialize the sentence embedding by a language model. Skip-thoughts
[16] is another sentence embedding initialization methods which
are similar to our proposed methods, but they only take the nearby
sentence into account which may not capture the long-term depen-
dencies between sentences. Very recently, Devlin et al. [9] proposed
a self-attention model to initialize the sentence embedding by a mask
language model, which obtains significant improvements in many
NLP applications. But their pre-training is focus on sentence level
initialization and must be fine-tuned during inference. In contrast,
our initialization is exactly same with the inference process, and
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the hierarchical architecture enable our model to capture structure
information in the text.

5 CONCLUSION
In this paper, to deal with story comprehension application SCT,
unlike most previous works which utilize the small development set
for training. We directly modeling the unlabeled stories with two
hierarchical encoder-decoder. We develop a self-determined loss
reweight training strategy to optimize the decoder. We also adopt a
large amount of unlabeled data to pre-training our model and achieve
comparative result with supervised models. We demonstrate the ad-
vantage of our proposed model compared with other unsupervised
generative and discriminative model. In addition, the loss-reweight
training strategy proposed in this paper could strengthen the decod-
ing quality of the encoder-decoder model.
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