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Abstract

Establishing robust visual correspondences is a fundamental component of many
computer vision applications. However, it is very challenging to obtain high quality fea-
tures while maintaining a low computational cost. This paper aims to tackle this problem
by adopting a novel Fast Robust Invariant Feature (FRIF) for both feature detection and
description. The basic idea is to employ a fast approximated LoG detector to select
scale-invariant keypoints and incorporate local pattern and inter-pattern information to
construct distinctive binary descriptors. A comprehensive evaluation on standard dataset
shows that FRIF achieves quite a high performance with a computation time comparable
to state-of-the-art real-time features.

1 Introduction
Local image feature is a fundamental component of many computer vision applications such
as 3D reconstruction [2], image retrieval [22], object recognition [16] and object catego-
rization [10]. The main goal is to find salient image points that can be repeatably detected
under various image transformations and then construct distinctive and robust representa-
tions for them. SIFT [16] is probably the most representative method which produces high
quality features at the expense of a relatively high computational cost. SURF [5] reduces the
computation time without loss in performance, however, it still cannot be used in real-time
applications, especially in the context of mobile device. Recently, several methods are pro-
posed for real-time applications, e.g. BRIEF [6], ORB [27], BRISK [14] and FREAK [4].
They combine the FAST-based corner [17, 25, 26] and binary descriptor to achieve high
speed. However, their feature detectors are based on the FAST methodology which uses
FAST scores to perform scale-space maxima search. The unreliable Fast score makes them
less robust than the slower methods and thus get a poor matching score under large image
transformations. In practice, it is very challenging to obtain a high quality feature whilst
maintaining a low computational cost.

This paper aims to tackle this problem by developing a novel Fast Robust Invariant Fea-
ture (FRIF). For feature detection, scale invariant and stable keypoints are selected in the
scale space according to our Fast Approximated LoG (FALoG) filter responses. For feature
description, distinctive binary descriptors are constructed by encoding both local pattern and
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Figure 1: A typical matching result using FRIF for two images with in-plane rotation and
scale change. The yellow circles represent detected keypoints whose scales are indicated by
the size. The cyan lines are the correct matches which localized in 2 pixels, while the red
lines are false matches.

inter-pattern information. By employing factorization and integral image, FALoG can be
computed very fast. Meanwhile, the binary descriptor is constructed directly by intensity
comparisons. Thus, both the detection and description of FRIF can be done very efficiently,
making it suitable for real-time applications.

To validate FRIF, we have evaluated the repeatability of our FALoG detector, the match-
ing quality of our binary descriptor and the overall performance of FRIF respectively. The
experiments show that FRIF achieves quite a high performance with a computation time
comparable to state of the art, e.g. BRISK and FREAK. A typical matching result using
FRIF for two images with in-plane rotation and scale change is shown in Figure 1.

The rest of this paper is organized as follows: First, an overview of related work is
given in Section 2. Section 3 and Section 4 describe the proposed Fast Approximated LoG
detector and mixed binary descriptor respectively. The experimental evaluation is carried out
in Section 5, and finally we conclude the paper in Section 6.

2 Related Work

2.1 Feature Detection
Moravec [21] defines corners as points where large intensity variation exists in every direc-
tion. Harris and Stephens [12] develop this idea by computing a second-moment matrix H
and selecting corners where both eigenvalues of H are large. Since the Harris corners are
not scale-invariant, Lindeberg [15] proposes a systematic methodology for automatic scale
selection by detecting local extremas over scales of different combinations of γ-normalized
derivatives. He develops the Laplacian-of-Gaussian (LoG) and the Determinant of the Hes-
sian matrix to detect blob-like features. Mikolajczyk and Schmid [18] find that the Lapla-
cian function is a particular stable scale-space kernel. They propose the Harris-Laplacian
and Hessian-Laplacian detectors which use the Harris measure and the determinant of Hes-
sian matrix to localize features respectively and use the Laplacian to select their character-
istic scales. Lowe [16] obtains scale-invariant features by detecting local extremas of the
Difference-of-Gaussian over scale space. The DoG is a good approximation of LoG and
much faster to compute. Bay et al. [5] develop the Fast-Hessian detector which approxi-
mates the second order Gaussian derivatives of Hessian matrix with rectangle filters. Since
the rectangle filters can be computed in time independent of their sizes using integral images,
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the Fast-Hessian detector is about 3 times faster than DoG. Since LoG can also be approxi-
mated by the Bi-level Laplacian-of-Gaussian (BLoG) [24], Agrawal et al. [3] replace the two
circles of BLoG by two boxes or two octagons to get the CenSurE-DOB or CenSurE-OCT
detector respectively. To compute these filters efficiently, they introduce slanted integral
images which can be used to compute the sum of any trapezoidal area in constant time. Re-
cently, the FAST corner [25] becomes popular in real-time applications for its efficiency.
FAST-ER [26] generalizes FAST by allowing it to be optimized for repeatability with little
loss of efficiency. AGAST [17] improves its performance by combining specialized decision
trees. Since these FAST-based detectors do not deal with scale change, BRISK [14] takes
AGAST to detect feature candidates and searches for the FAST score maxima over scale
space to achieve scale invariance.

2.2 Feature Description
The most popular feature descriptors are those based on histograms [5, 13, 16, 20, 31, 32,
34], which are shown to outperform other kinds of descriptors such as differential deriva-
tives [29], steerable filters [9], complex filters [28] and moments invariants [11]. SIFT [16]
creates a histogram of local gradient orientations and locations, where the gradient orien-
tations are quantized into 8 orientation bins and the space locations are quantized into a
4×4 grid. DAISY [32] extends SIFT by using circular regions defined by Gaussians with
increasing variances as the regions go away from the point center, while SURF [5] uses
the Haar wavelet responses as the local features. Since the above gradient-based descriptors
can only deal with linear illumination changes, some other methods have been proposed to
tackle more general illumination changes by using relative intensity orders of pixels rather
than the original intensities. Tang et al. [31] create a histogram encoding both the ordinal
distribution and the spatial distribution. Heikkilä et al. [13] combine the strength of SIFT
and LBP texture operator [23] to create a histogram of Center-Symmetric Local Binary Pat-
tern (CS-LBP). Fan et al. [7, 8] propose MROGH and MRRID by accumulating histograms
within intensity order segments. Wang et al. [34] propose a novel Local Intensity Order Pat-
tern (LIOP) to encode the local ordinal information and create a histogram of LIOP for each
ordinal subregion. In recent years, binary-string descriptors have been developed because
of less storage and faster computation. BRIEF [6] uses a relatively small number of binary
tests between pixels to represent the local patch as a binary string. ORB [27] extends BRIEF
to be rotation invariant by an intensity centroid based orientation estimation, and be more
discriminative by learning a good subset of binary tests. BRISK [14] introduces a Gaussian
weighted pattern for sampling the neighborhood of keypoints. The long-distance pairs are
used to estimate the local dominant orientation and the short-distance pairs are used to build
binary descriptor. FREAK [4] proposes a retinal sampling pattern based on the human visual
system, and computes the binary descriptor by comparing image intensities over the retinal
patterns. D-BRIEF [33] boosts the performance by projecting the image patches into a more
discriminative subspace and thresholding their coordinates to build the binary descriptor.

3 Fast Approximated LoG Detector
We develop a scale-invariant feature detector based on the LoG function since it is found
to be more stable than other derivative based functions in characteristic scale selection [18].
To the best of our knowledge, CenSurE is the fastest approximation of LoG among existing
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Figure 2: The approximation of LoG kernel.

approaches. However, it treats the surrounding areas equally, losing the main characteristic
of LoG. Moreover, it does not perform a scale-space refinement, resulting in a lower accura-
cy. Hence, CenSurE obtains the advancement of speed at the cost of accuracy. To alleviate
above problems, we propose a better approximation of LoG which can be computed very
fast by factorization and integral image while preserving most properties of LoG.

The proposed Fast Approximation of LoG (FALoG) filter assigns the surrounding areas
with different weights according to their distances to the central point and keeps the DC
response to be zero. As shown in Figure 2, a 9×9 FALoG filter is used to approximate LoG
with σ = 1.2. To efficiently compute the response of FALoG filter, it is factorized into four
rectangles with different weights. The response of each rectangle can be computed rapidly
using integral image. By summing over all the responses of these four rectangle filters, we
obtain the response of FALoG filter.

The scale space is implemented in a way similar to BRISK [14]. Specifically, it consists
of n octaves ci and n intra-octaves di for i = {0,1, . . . ,n−1} where c0 is the original image
and d0 is a two-thirds downsampling of c0. The octaves and intra-octaves are built by pro-
gressively half-sampling c0 and d0 respectively. The above 9×9 FALoG filter is used in each
octave and intra-octave, and therefore scale(ci) = 1.2×2i and scale(di) = 1.2×1.5×2i.

To obtain scale invariant keypoints, we first compute the integral image for each octave
and intra-octave. This can be done very fast since only one scan over the scale space is re-
quired. Next, we compute the 9×9 FALoG filter response for each pixel in the scale space
separately, and a threshold TF is applied to filter out weak responses. Then, for the remain-
ing points, non-maximum suppression is performed so that only the extremas of FALoG
responses in a local neighborhood over locations and scales are kept as potential keypoints.
Finally, we refine the scale and location of each keypoint via quadratic function fitting.

Similar to LoG, FALoG filter has strong responses along edges, which are poorly lo-
calized and sensitive to noise. To filter out these edge responses, we compute the ratio of
principal curvatures by the trace and determinant of Harris matrix. Keypoint candidates with
ratios larger than TL are considered as edges and are removed. Note that the Harris matrix is
computed on the scale-space image. Experiments show that it is better than computing the
Harris matrix on the filter response function as CenSurE [3] does.

4 Mixed Binary Descriptor
Both BRISK and FREAK descriptors make use of a specific pattern in the neighborhood of
keypoint. For BRISK, the pattern defines locations equally spaced on circles concentric with
the keypoint. A Gaussian smoothing with standard deviation σi proportional to the distance
between the pattern location and central keypoint is applied to avoid aliasing effect. For
FREAK, the pattern is similar to the distribution of the retinal ganglion cells. It has more
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overlapping areas and the density of pattern locations drops exponentially with the distance
to the center increases.

We observed that both of them only consider the inter-pattern intensity relationships, i.e.
pair-wise intensity comparisons between pattern locations. The loss of local pattern informa-
tion, which is more consistent under brightness variation, makes them less reliable. Thus, the
basic idea of our method is to incorporate both the local pattern and inter-pattern information
to improve matching performance. More specifically, the descriptor is constructed based on
a modified BRISK pattern which has more overlapping areas than the original one. The lo-
cal gradients of pattern locations and the inter-pattern intensity comparisons are combined
to create the mixed binary descriptor.

Let P be the set of all the N pattern locations, for each pattern location pi = (xi,yi) ∈ P ,
a set of four points S(pi) = {si,k,k = 1,2,3,4} are equally sampled on a circle of radius
R centered at pi. As presented by LBP texture operator [23], the local information can be
encoded by the intensity relationships between the pattern location pi and each sampling
point si,k . However, this encoding scheme is sensitive to pi, and thus is not appropriate for
binary description. To encode the local information robustly, we make use of the intensity
relationships between sampling points si,k.

Let I(x,σ) be the smoothed intensity of point x with sigma σ and θ be the local dominant
orientation estimated by the average local gradients [4, 14]. For each rotated pattern location
pi

θ , we compare the pair-wise intensities of its sampling points sθ
i,k ∈ S(pθ

i ). Then, the
descriptor is constructed by assembling all the test results into a binary string, each bit b of
which corresponds to:

b = sign(I(sθ
i,k,σi)− I(sθ

i,t ,σi)), (1)

∀pθ
i ∈ P ∧ sθ

i,k,s
θ
i,t ∈ S(pθ

i )∧ k, t = 1,2,3,4∧ k ̸= t.

As four points are sampled for each pattern location, the dimension of the descriptor is
N ×C2

4 = 6N bits. It is worth noting that the intensity comparisons between sampling points
si,k is closely related to the local gradient operator, both of which consider the intensity
differences between pairs of local samplings.

The above descriptor encodes the local pattern information into binary strings. We com-
plement it with more global information, which is encoded by the inter-pattern intensity
comparisons. Let the set A be all pairs of pattern locations:

A= {(pi, p j) | pi, p j ∈ P ∧ i ̸= j}. (2)

A binary string can be computed by comparing the intensities of all the rotated pairs (pθ
i , pθ

j )

in a subset B of A, each bit of which corresponds to sign(I(pθ
i )− I(pθ

j )). To form the subset
B, we tested three different selection criteria: 1) randomly select M pairs from A. 2) select
the shortest M pairs of A. 3) select the longest M pairs of A. Experiments show that the
shortest pairs are more stable than others. This result is consistent with BRISK, which uses
the short-distance pairs to build the descriptor. The difference is that, in our method only
the shortest M pairs are used as a complementary part of the previous local gradient based
binary descriptor.

By concatenating the two kinds of complementary binary strings together, we obtain our
mixed binary descriptor. As the BRISK and FREAK descriptor are both 512 bits, we select
M = 512−6N to make the mixed binary descriptor the same dimension to them.
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5 Experiments
We have evaluated our method on the standard Oxford dataset [1] which contains images
with different geometric and photometric transformations of structured and textured scenes.
There are several parameters in our method: 1) the size of FALoG filter S used in each octave,
2) the FALoG filter response threshold TF , 3) the edge suppression threshold TL and 4) the
local samping radius R. The ’Graf’ sequence were used to investigate the effect of different
parameters settings. It is found that the performance of FRIF is insensitive to a regular range
of parameter settings. A typical parameters setting is given in Table 1, which is used in the
later experiments.

detector descriptor
Parameters S TF TL R
Values 9 50 20 3

Table 1: A typical parameters setting of FRIF
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Figure 3: Experimental results of repeatability scores. The effect of image transformation
increases with the image number.

5.1 Detector Evaluation
The detectors are evaluated using the repeatability criterion introduced in [30]. We compare
FRIF detector with SURF, CenSurE, and BRISK detectors as they are state-of-the-art fast
scale invariant detectors. To make a fair comparison, we keep the number of interest points
similar for all the detectors by choosing different thresholds.

We first test the repeatability scores of different detectors for gradually increasing trans-
formation. The results are presented in Figure 3. FRIF detector consistently outperforms
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Figure 4: Experimental results of repeatability scores with (a) the amount of Gaussian noise,
(b) the umber of detected keypoints, (c) the localization error and (d) the scale error varied.
The results are averaged over all the images in the dataset.

CenSurE in all cases, which can be attributed to the more suitable weighting strategy and
better scale space interpolation. CenSurE approximates LoG by a uniform weighting and
detects keypoints without scale-space interpolation, which makes it suffer a low repeata-
bility. FRIF is also better (Bikes, Boat, Leuven, Wall, Ubc) than or comparable (Graf) to
BRISK detectors. This can be explained by the fact that BRISK uses the FAST score as the
scale-space maxima search criterion which is less reliable than FALoG filter response used
by FRIF. Compared to SURF, FRIF also obtains a better repeatability, although a little worse
for large image blur (Figure 3(a)).

We also test the robustness of FRIF detector on images corrupted by increasing amount
of additive Gaussian noise. The average results over all the images in the dataset are shown
in Figure 4(a). It can be seen that all the tested detectors suffer a performance degradation
as the noise level increases. However, FRIF detector shows the best robustness and outper-
forms others.To further validate FRIF detector, we perform a more detailed analysis on the
experimental setup based on the results averaged over all the images pairs in the dataset.
Figure 4(b) shows how the repeatability is affected by the number of keypoints detected in
each image. It is clear that the rank of different detectors is not changed when the number
varies from 0 to 1200, therefore the previous experimental results are not affected by this
setup. Figure 4(c) and (d) show the repeatability as a function of localization error and scale
error respectively. As expected, more keypoints are qualified as correspondences when the
threshold relaxes, and the repeatability scores increase. The rank of detectors remains the
same, indicating that our experimental setup is not sensitive to the choice of thresholds.

5.2 Descriptor Evaluation
The descriptors are evaluated using recall versus 1-precision curves proposed in [20]. We
compare FRIF descriptor with SURF, ORB, BRISK and FREAK descriptors, since SURF
is a classical fast descriptor while ORB, BRISK and FREAK are recently proposed binary
descriptors. To make a fair comparison, we set the size of local patch the same for all the
tested descriptors (31×31). We use BRISK detector to select keypoints since it is the most
popular real-time scale invariant feature detector. The results of two image pairs (the 1st vs.
the 2nd and the 1st vs. the 4th) for each case are presented in Figure 5.

For all cases except ’Bikes 1-4’, FRIF is better than or at least comparable to all the
other tested descriptors. This could be explained by the fact that the combination of local
pattern and inter-pattern information improves the discriminative power of the descriptors.
The performance degradation in ’Bikes 1-4’ can be explained by that the local pattern infor-
mation explored by FRIF is more likely to be affected by the image blur than the pair-wise
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Figure 5: Experimental results for: (a)-(b) image blur, (c)-(d) rotation and scale change, (e)-
(h) viewpoint change, (i)-(j) illumination change and (k)-(l) JPEG compression. Note that
the scales are different for different figures to improve the clarity of the plots.

information used by ORB, BRISK and FREAK.

5.3 Joint Detection and Description Evaluation

The overall performance of our joint feature detection and description algorithms are eval-
uated using the matching score criterion introduced in [19]. Since the algorithm which
produces highly repeatable interest points with distinctive descriptors will obtain a relatively
high matching score, this criterion can be a suitable measurement of the joint performance of
detection and description. We compare FRIF features to SURF, ORB, BRISK and FREAK
features, and all the features use their default parameters settings to make a fair compari-
son. As can be observed in Figure 6, FRIF performs the best in all tested cases. This result
demonstrates the effectiveness of FALoG detector and mixed binary descriptor used by FRIF.

5.4 Timing Results

In this section, we compare the computation times of FRIF to SURF, ORB, BRISK and
FREAK. The experiments are carried out on a desktop with an Intel Core2 Quad 2.83GHz
CPU, using the first image of the ’Bike’ sequence, and the results are averaged over 100
runs. The total time of joint detection and description as a function of feature numbers is
shown in Figure 7, while Table 2 gives a more detailed result when each algorithm produces
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Figure 6: Experimental results of matching scores. The effect of image transformation in-
creases with the image number. Note that the scales are different for different figures to
improve the clarity of the plots.

Time per feature SURF ORB BRISK FREAK FRIF
Detection time (ms) 0.223 0.015 0.016 0.022 0.024

Description time (ms) 0.181 0.011 0.022 0.010 0.025
Overal time (ms) 0.404 0.026 0.038 0.032 0.049

Table 2: The average time required for processing one feature. Thresholds are adapted in
order to detect similar number of keypoints (about 1500) for different algorithms.

about 1500 features. It is clear that FRIF is comparable to ORB, BRISK and FREAK, and
all of them are an order of magnitude faster than SURF. In a word, FRIF obtains higher
performance without loss of speed, making it suitable for real-time applications.

6 Conclusion

In this paper, we have proposed a Fast Robust Invariant Feature (FRIF) for both feature de-
tection and description. The key advantage of FRIF over existing ones is that it achieves
quite a high repeatability and matching performance at a very low computational cost. This
makes it a good choice for real-time computer vision applications, especially in the case of
mobile device with limited resources. The advantage is achieved by employing a fast approx-
imated LoG filter to detect scale-invariant keypoints in real time and incorporating both local
pattern and inter-pattern information to construct a distinctive binary descriptor. Extensive
experiments on various image transformations have shown that FRIF feature outperforms
the state-of-the-art methods in general.
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Figure 7: Experimental results of the total time as a function of feature numbers.
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