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Abstract: 
This paper presents a novel neural network integrating 

both Gauss neural network and Chebyshev neural network. 
The Gauss-Chebyshev neural networks take advantages of the 
Gauss kernel for local approximation ability, but the 
Chebyshev one for global generalization ability. Numerical 
experiments confirm the new strategy on the better 
performance in comparison with Gauss neural networks. 
Furthermore, under the same initialization conditions, 
Gauss-Chebyshev neural network is more efficient than 
Gauss-Sigmoid neural network for regression application. All 
eight functions tested from the experiments show the 
improvements of the proposed neural networks. 
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1. Introduction 

Since having the merits of simple structure, rapid 
convergence rate and excellent approximation ability, 
Gauss neural network is widely used in many fields, such as 
time series analysis, pattern recognition, nonlinearity 
control and etc. However, the generalization and anti-noise 
abilities of Gauss neural network are not so good in some 
cases [1] [2]. Furthermore, when approximates a function 
including both linear and nonlinear segments, Gauss neural 
network may be inefficient to provide satisfying outcomes 
[2].  

To improve the generalization ability of Gauss neural 
network, Shibata and Ito constructed a Gauss-Sigmoid 
neural network model and achieved better simulation 
results [3]. However, the convergence speed of 
Gauss-Sigmoid neural network is quite slow. 

Chebyshev neural network is first introduced by 
Namatame and Ueda in 1992 and applied to pattern 
recognition [4]. Comparing with multiple layer perceptron, 
Chebyshev neural network is better for its high learning 
speed and approximation accuracy [5]. Furthermore, our 

previous study shows that Chebyshev neural network 
provides the more varieties of nonlinearities than using 
sigmoidal and Gaussian kernel functions [6].  

To posses the advantage of Chebyshev neural network 
and overcome the shortcomings of Gauss and 
Gauss-Sigmoid neural networks, a Gauss-Chebyshev neural 
network is constructed in the paper. The rest of the paper 
are as follows. Section 2 reviews Gauss, Chebyshev and 
Gauss-Sigmoid neural networks. In Section 3, the 
topological structure and learning algorithm of 
Gauss-Chebyshev neural network are discussed in detail. 
The results concerning experiments are reported in Section 
4 and some concluding remarks are given in Section 5. 

2. Gauss, Chebyshev, and Gauss-Sigmoid neural 
networks 

Gauss neural network is a three layers feedforward 
neural network with one hidden layer, its parametric model 
can be expressed as: 
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 is the center of the th unit of the 

hidden layer, while the width 
parameter. The training algorithm for Gauss neural network 
usually uses gradient descent techniques. 
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Similar to Gauss neural network, Chebyshev neural 
network is a three layers feedforward neural network with 
one hidden layer too. Its parametric model is as follows: 
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and . Chebyshev neural network 
usually uses back propagation algorithm for training its 
weights. 

1, 2, , 1n K= K −

n−x

Gauss-Sigmoid neural network is a four layers 
feedforward neural network with two hidden layers. The 
network model can be expressed as:  

2 11 1
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where 1f  and 2f  are both sigmoidal functions 
which represent the outputs of the first hidden layer and the 
second hidden layer respectively. ( ) are 
Gaussian functions, thus the forms of their expressions are 
same with the  in equation (1). Training algorithm for 
Gauss-Sigmoid neural network is back propagation 
algorithm too. 
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3. Gauss-Chebyshev neural network 

To improve the generalization and approximation 
abilities especially approximating a function including both 
linear and nonlinear segments and enhance the anti-noise 
performance of Gauss neural network, a Gauss-Chebyshev 
neural network is constructed. At the same time, the aims of 
constructing this network are enhancing the convergence 
speed and improving approximation accuracy of 
Gauss-Sigmoid neural network. 

3.1. Topological Structure 

Similar to Gauss-Sigmoid neural network, 
Gauss-Chebyshev neural network consists of one input 
layer, two hidden layers and one output layer too. It is 
shown a single output Gauss-Chebyshev neural network in 
Figure 1. Let the input vector be , 
then input  into the first hidden layer directly. The first 
hidden layer is composed of Gaussian functions 

( k K ), so the th unit in the first hidden 
layer is: 
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The second hidden layer of Gauss-Chebyshev neural 
network consists of Chebyshev polynomials 

, then the th unit of the second 
hidden layer can be expressed as: 
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 whose form of expression is 

same with the formula (3), where  is the weight 
connecting the th unit of the second hidden layer and the 

th unit of the first hidden layer and  is the threshold. 

nkw

nk θ
Finally, the output of the network is: 
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where  is the weight connecting the output unit and the 
th unit of the second hidden layer. 
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Figure 1. Gauss-Chebyshev Neural Network 

3.2. Learning Algorithm 

The modified back propagation algorithm [7] is used 
for training Gauss-Chebyshev neural network. The error 
function of the learning algorithm is as follows: 
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algorithm [7], finally, the changes of the weights and 
parameters are as follows:  

E nv

nkw nθ kmc kmσ

nv∆ = − + ∆

nk
nk

+

θ η− +

km
km

+

oldσ

=
=

nkw

km

E

N

α

1,=

)T
kMc

)T
kMσ

2,K

y

px
,p PK=

2]p)px
p

= ∑
y

old
n

n

Ev
v

η α∂
∂

，                   (8) 

 old
nk

Ew
w

η α∂− ∆
∂

∆ = ，                (9) w

 old
n

n

E α θ
θ

∂ ∆
∂

∆ = ，                (10) n

 old
km

Ec
c

η α∂− ∆
∂

∆ = ，            (11) c

 km kmσ η α
σ
∂− + ∆

∂
∆ = ，              (12) 

where  is the momentum constant. Finally, the learning 
algorithm of Gauss-Chebyshev neural network can be 
induced as follows: 

• Step 1. Initialize the centers  

and the width parameters , 

then initialize the weights  ,   and the 

threshold , where  and 

. Finally, set the learning rate 
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η  and 
the momentum constant  be values between 0 and 
1;  
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• Step 2. Compute the outputs  of the network 

according to the equation (5) and (6) for the inputs , 

where
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outputs  and the target outputs . If the 
error is less than a given threshold, go to Step 3, else 
go to Step 4; 
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• Step 3. If the times of iteration exceed the maximum 
times, go to Step 4, else modify the weights and 

parameters as follows:    v v , 

, , 

, . And turn 
to Step 2; 
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• Step 4. End. 

4. Numerical Experiments 

To testify the higher performance of Gauss-Chebyshev 
neural network, several experiments are conducted as 
follows. Three of them are performed to compare Gauss 
neural network with Gauss-Chebyshev neural network and 
one for comparing Gauss-Sigmoid neural network with 
Gauss-Chebyshev neural network. 

4.1.  Experiments with Gauss and Gauss-Chebyshev 
Neural Networks 

In the first experiment, the training data are generated 
by the following function [2], namely Func 1: 
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121 training data are selected uniformly from the above 
function on the domain [-6, 6] by step length chosen to be 
0.1. The number of units in each layer of the Gauss neural 
network is 1-27-1, while the Gauss-Chebyshev neural 
network 1-10-5-1. The learning rates η  for the two 
networks are both 0.001 and the momentum constants  
0.001 too. The times of maximum iteration for the two 
networks are both 3000. Then the approximation results of 
the Gauss neural network and the Gauss-Chebyshev neural 
network are shown in Figure 2(a) and Figure 2(b), 
respectively. Note that the free parameters of Gauss neural 
network contain v , , and , while 

Gauss-Chebyshev neural network , , , , 

and . The total numbers of free parameters for both 
networks are shown in the captions of their corresponding 
figures, which are denoted by signs

α

km

n kmc kmσ

nv nkw nθ c

kmσ

PN . 
It is shown in Figure 2(a) and Figure 2(b) that in the 

intervals [-6, 0] and [2, 6] the approximation results of the 
Gauss-Chebyshev neural network is much better than that 
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of the Gauss neural network. The reason is that a hidden 
layer composed by Chebyshev polynomials is added into 
the Gauss neural network, which can improve the accuracy 
of Gauss neural network for approximating a function with 
linear segments or even constant values in some intervals. 

 
Figure 2(a). Gauss Neural Network ( PN =81) 

 
Figure 2(b). Gauss-Chebyshev Neural Network ( PN =80) 

 
Another experiment is conducted to demonstrate the 

influences of the noises to the two networks. The function 
to be approximated is: ( ) sin(2 )f x xπ=

E

, , 
namely Func 2. 21 training data are selected from 

 on the domain [0, 1] by step length 0.05, where 

 is a Gaussian white noise. The number of 
units in each layer of the Gauss neural network is 1-15-1, 
while the Gauss-Chebyshev neural network is 1-6-4-1. The 
parametric settings for the two networks are same with the 
above experiment except that the times of maximum 
iteration. Then the approximating errors  between the 
network outputs and the target outputs for different iteration 

epochs are shown in Table 1. The sign  in the table 
denotes the number of iteration for the training of the two 
networks. 

[0,1]x ∈

( )f x ε+
~ (0Nε 2,0.1 )

IN

P

Table 1. The approximation errors of different epochs for 
the Gauss and Gauss-Chebyshev neural networks 

IN  
Gauss 

( PN =45) 
Gauss-Chebyshev 

( N =44) 
3000 0.0378 0.0299 
6000 0.0393 0.0245 

12000 0.0502 0.0245 
24000 0.0735 0.0271 

 
It is shown in Table 1 that after 3000 epochs, the 

approximation error of the Gauss-chebyshev neural 
network goes on decreasing while the Gauss neural network 
begins to increasing, which means that the convergence 
speed of the Gauss neural network is faster than the 
Gauss-Chebyshev one in this experiment. However, the 
noises begin to producing impacts on the two networks 
after 3000 and 12000 epochs respectively. It can be deduced 
that the performance of anti-noise ability of the 
Gauss-Chebyshev neural network is better than the Gauss 
one because its increasing rate of approximation error after 
6000 epochs is slower than that of the Gauss neural 
network after 3000 epochs. 

Finally, to compare the generalization ability of Gauss 
and Gauss-Chebyshev neural networks, two functions are 
utilized for generating training and testing data. They are 
shown in Table 2. The training and testing data are selected 
uniformly from the two functions on their corresponding 
domains without noises. The numbers of training and 
testing data are shown in Table 2. 

Table 2. Functions are used for generating training and 
testing data 

Name Function Domain Train 
data

Test 
data

Func 3 ( ) sin( )f x xπ=  [-1, 1] 21 201

Func 4
2( 1) ( 1)( ) x xf x e e− − − += +

2

 [-2.5, 2.5] 51 101

 
The number of units in each layer of the Gauss neural 

network is 1-15-1, while the Gauss-Chebyshev neural 
network 1-6-4-1. The learning rates η  and the momentum 
constants  for the two networks are both 0.001. For 
approximating the underlying function 3, the times of 
maximum iteration for the two networks are both 3000. For 
approximating the underlying function 4, the times of 

α
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maximum iteration for the Gauss-Chebyshev neural 
network is 1000 while 3000 for the Gauss neural network. 
Similar to the second experiment, the numbers of the total 
free parameters PN  for the two networks are 45 and 44, 
respectively. 

After repeated 100 times, the box plots of the training 
and testing errors for the two networks are shown in Figure 
3. The upper part of Figure 3 contains the training and 
testing errors of the two networks for the underlying 
function 3, while the lower part for the underlying function 
4. It is shown in Figure 3 that both the mean values of the 
training error and the mean values of the testing errors of 
the Gauss-Chebyshev neural network are less than that of 
the Gauss neural network for the two functions. 
Furthermore, the margins between the testing errors of the 
two networks are much larger than that between the training 
errors. Then it can be declared that the generalization ability 
of Gauss-Chebyshev neural network is superior to Gauss 
neural network. 

 
Figure 3. The training and testing errors for Gauss neural 

network ( PN =45) and Gauss-Chebyshev Neural Network 

( PN =44) for the underlying function 3 (Upper half part) 
and function 4 (Lower half part) 

4.2.  Experiments with Gauss-Sigmoid and 
Gauss-Chebyshev Neural Networks 

In this experiment, five functions are used for 
generating training data. They are shown in Table 3. Note 
that the training data are all selected uniformly from the 
five functions on their corresponding domains. The 
numbers of units in each layer of the Gauss-Sigmoid and 
the Gauss-Chebyshev neural networks are both set to be 
1-10-5-1. The learning rates η  and the momentum 
constants  for the Gauss-Chebyshev neural networks 

are both 0.001, while 0.01 for the Gauss-Sigmoid neural 
networks. For the function 7 and 8 in Table 3, the times of 
maximum iteration for both networks are 1000, while 3000 
for the other two functions. Note that the numbers of the 
total free parameters 

α

PN  for both networks are both 80. 

sin(

1 (x
sin(xe π

sin(x x

Table 3. Functions are used for generating training data 

Name Function Domain  Train data
Func 5 0.4( ) ) xf x x e−=  [0, 10] 201 

Func 6 2

1( )
2)

f x =
+ −

 [0, 4] 401 

Func 7 )( ) xf x =  [-1, 1] 201 
Func 8 ( ) ) /f =  [-10, 10] 100 x

 
As the training stopped, the errors between the target 

outputs and the corresponding network outputs for the 
Gauss-Sigmoid and Gauss-Chebyshev neural networks are 
shown in Table 4. 

Table 4. The errors for the Gauss-Sigmoid and 
Gauss-Chebyshev neural networks after training 

Model Func 5 Func 6 Func 7 Func 8
Gauss- Sigmoid 
( PN =80) 0.9115 0.1294 3.9704 0.4320

Gauss- Chebyshev
( PN =80) 0.0759 0.0015 0.0129 0.0093

 
It is shown in the Table 4 that after the same epochs, 

the approximation errors of the Gauss-Chebyshev neural 
networks are much less than the Gauss-Sigmoid neural 
networks for the five underlying functions. 

To compare the convergence speeds of the 
Gauss-Sigmoid and Gauss-Chebyshev neural networks, the 
function 2 is used again. 101 training data are chosen 
uniformly from the function 2 on its domain by step length 
0.01. The parameters of the two networks are same with the 
above experiment except that the times of the maximum 
iteration for the Gauss-Sigmoid neural network is 6000. 
Then the approximation results of the Gauss-Sigmoid 
neural network and the Gauss-Chebyshev neural network 
are shown in Figure 4(a) and Figure 4(b), respectively. 

It is shown in the upper parts of the Figure 4(a) and 
Figure 4(b) that though after 6000 epochs, the 
approximation error of the Gauss-Sigmoid neural network 
is still bigger than the error of the Gauss-Chebyshev  
neural network which after only 1000 epochs. Furthermore, 
from the lower parts of the Figure 4(a) and Figure 4(b) we 
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are further confirmed that the convergence speed of the 
Gauss-Chebyshev neural network is more quickly than the 
Gauss-Sigmoid neural network. 

 
Figure4 (a). The approximation result and error curve of the 

Gauss-Sigmoid neural network ( =80) pN

 
Figure4 (b). The approximation result and error curve of the 

Gauss-Chebyshev neural network ( =80) pN

5. Final Remarks 

The numerical studies in Section 4 show that 
Gauss-Chebyshev neural network can improve the 
generalization, approximation, and anti-noise abilities of 
Gauss neural network. With the same topological structure 
and parametric setting, comparing with Gauss-Sigmoid 
neural network, Gauss-Chebyshev neural network can 
approximate a function more quickly and exactly. However, 
there exist issues for the further study on Gauss-Chebyshev 
neural network as follows: 
a. To investigate the generalization ability of 

Gauss-Chebyshev neural network from nonlinear 

analysis; 
b. To develop a methodology of forming the structure of 

the network; 
c. To enhance the training speed of Gauss-Chebyshev 

neural network by a more efficient learning algorithm. 
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