中国科学院自动化研究所   设为首页   加入收藏  联系我们
 
English
网站首页     实验室概况     研究队伍     组织机构     学术交流     科研成果     人才培养     开放课题     创新文化     资源共享     联系我们
    学术讲座

Recent Results on Learning Filters and Style Transfer

模式识别学术大讲堂
Advanced Lecture Series in Pattern Recognition
题    目 (TITLE):Recent Results on Learning Filters and Style Transfer
讲 座 人 (SPEAKER):Prof. Ming-Hsuan Yang (UC Merced / Nvidia Research)
主 持 人 (CHAIR): Dr. Tianzhu Zhang
时    间 (TIME):14:00pm, December 22 (Friday), 2017
地    点 (VENUE):No.1 Conference Room (3rd floor), Intelligence Building
报告摘要(ABSTRACT):In the first part of this talk, I will present recent results on learning image filters for low-level vision. We formulate numerous low-level vision problems (e.g., edge-preserving filtering and denoising) as recursive image filtering via a hybrid neural network. The network contains several spatially variant recurrent neural networks (RNN) as equivalents of a group of distinct recursive filters for each pixel, and a deep convolutional neural network (CNN) that learns the weights of the RNNs. Experimental results show that many low-level vision tasks can be effectively learned and carried out in real-time by the proposed algorithm. In the second part, I will present recent results on style transfer. I will first present an algorithm to one style transfer network from training examples of 1,000 styles. Next, I will present recent results on universal style transfer without prior learning. When time allows, I will also give previews of most recent results on portraiture rendering from a monocular camera, image/video segmentation, and semi-supervised optical flow.
报告人简介(BIOGRAPHY):Ming-Hsuan Yang is a professor in Electrical Engineering and Computer Science at University of California, Merced. He received the PhD degree in Computer Science from the University of Illinois at Urbana-Champaign in 2000. He serves as an area chair for several conferences including CVPR, ICCV, ECCV, ACCV, AAAI, and FG. He serves as a program co-chair for IEEE International Conference on Computer Vision in 2019 as well as Asian Conference on Computer Vision in 2014, and general co-chair for Asian Conference on Computer Vision in 2016. He serves as an associate editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence (2007 to 2011), International Journal of Computer Vision, Computer Vision and Image Understanding, Image and Vision Computing, and Journal of Artificial Intelligence Research. Yang received the Google faculty award in 2009, and the Distinguished Early Career Research award from the UC Merced senate in 2011, the Faculty Early Career Development (CAREER) award from the National Science Foundation in 2012, and the Distinguished Research Award from UC Merced Senate in 2015.

友情链接
 
中科院自动化研究所 模式识别国家重点实验室 事业单位  京ICP备14019135号-3
NLPR, INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES